14 research outputs found

    On Delay-limited Average Rate of HARQ-based Predictor Antenna Systems

    Get PDF
    Predictor antenna (PA) system is referred to as a system with two sets of antennas on the roof of a vehicle, where the PAs positioned in the front of the vehicle are used to predict the channel state observed by the receive antennas (RAs) that are aligned behind the PAs. In this work, we study the effect of spatial mismatch on the accuracy of channel state information estimation, and analyze the delay-constrained average rate of hybrid automatic repeat request (HARQ)-based PA systems. We consider variable-length incremental redundancy (INR) HARQ protocol, and derive a closed-form expression for the maximum average rate subject to a maximum delay constraint. Moreover, we study the effect of different parameters such as the vehicle speed, the antenna distance and the rate allocation on the system performance. The results indicate that, compared to the open-loop case, the delay-limited average rate is considerably improved with our proposed PA-HARQ scheme.Comment: Submitted to IEEE Wireless Communication Letter

    On Delay-limited Average Rate of HARQ-based Predictor Antenna Systems

    Get PDF
    Predictor antenna (PA) system is referred to as a system with two sets of antennas on the roof of a vehicle, where the PAs positioned in the front of the vehicle are used to predict the channel state observed by the receive antennas (RAs) that are aligned behind the PAs. In this work, we study the effect of spatial mismatch on the accuracy of channel state information estimation, and analyze the delay-constrained average rate of hybrid automatic repeat request (HARQ)-based PA systems. We consider variable-length incremental redundancy (INR) HARQ protocol, and derive a closed-form expression for the maximum average rate subject to a maximum delay constraint. Moreover, we study the effect of different parameters such as the vehicle speed, the antenna distance and the rate allocation on the system performance. The results indicate that, compared to the open-loop case, the delay-limited average rate is considerably improved with our proposed PA-HARQ scheme

    Predictor Antenna: A Technique to Boost the Performance of Moving Relays

    Get PDF
    In future wireless systems, a large number of users may access the networks via moving relays (MRs) installed on top of vehicles. One of the main challenges of MRs is rapid channel variation which may make channel estimation, and its following procedures, difficult. To address these issues, various schemes are designed, among which predictor antenna (PA) is a candidate. The PA setup refers to a system with two (sets of) antennas on top of a vehicle, where the PA(s) positioned in front of the vehicle is(are) utilized to predict the channel state information required for data transmission to the receive antennas (RAs) aligned behind the PA. In this paper, we introduce the concept and the potentials of PA systems. Moreover, summarizing the field trials for PAs and the 3GPP attempts on (moving) relays, we compare the performance of different PA and non-PA methods for vehicle communications in both urban and rural areas with the PA setup backhauled through terrestrial or satellite technology, respectively. As we show, with typical parameter settings and vehicle speeds, a single-antenna PA-assisted setup can boost the backhaul throughput of MRs, compared to state-of-the-art open-loop schemes, by up to 50%

    Transmission of wireless backhaul signal in a cellular system with small moving cells

    Get PDF
    Deployment of small moving cells (SMCs) has been considered in advanced cellular systems, where wireless backhaul links are required between base stations and SMCs. In this paper, we consider signal transmission by means of multiuser beamforming in the wireless backhaul link. We generate the beam weight in an eigen-direction of weighted combination of short- and long-term channel information of the backhaul link. The beam weight can maximize the average signal-to-leakage-plus-noise ratio (SLNR), while providing the transmission robust to SMC mobility. We analyze the performance of the proposed scheme in terms of the average signal-to-interference-plus-noise ratio (SINR) and optimize the transmit power by iterative water-filling. Finally, we verify the performance of the proposed scheme by computer simulation.This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1F1A1063171)

    CogITS: Cognition-enabled network management for 5G V2X Communication

    Get PDF
    The 5G promise for ubiquitous communications is expected to be a key enabler for transportation efficiency. However, the consequent increase of both data payload and number of users derived from new Intelligent Transport Systems makes network management even more challenging; an ideal network management will need to be capable of self-managing fast moving nodes that sit in the 5G data plane. Platooning applications, for instance, need a highly flexible and high efficient infrastructure for optimal road capacity. Network management solutions have, then, to accommodate more intelligence in its decision-making process due to the network complexity of ITS. This paper proposes this envisioned architecture namely Cognition-enabled network management for 5G V2X Communication (CogITS). It is empowered by machine learning to dynamically allocate resources in the network based on traffic prediction and adaptable physical layer settings. Preliminary proof-of-concept validation results, in a platooning scenario, show that the proposed architecture can improve the overall network latency over time with a minimum increase of control message traffic

    Predictor Antenna Systems: Exploiting Channel State Information for Vehicle Communications

    Get PDF
    Vehicle communication is one of the most important use cases in the fifth generation of wireless networks (5G).\ua0 The growing demand for quality of service (QoS) characterized by performance metrics, such as spectrum efficiency, peak data rate, and outage probability, is mainly limited by inaccurate prediction/estimation of channel state information (CSI) of the rapidly changing environment around moving vehicles. One way to increase the prediction horizon of CSI in order to improve the QoS is deploying predictor antennas (PAs).\ua0 A PA system consists of two sets of antennas typically mounted on the roof of a vehicle, where the PAs positioned at the front of the vehicle are used to predict the CSI observed by the receive antennas (RAs) that are aligned behind the PAs. In realistic PA systems, however, the actual benefit is affected by a variety of factors, including spatial mismatch, antenna utilization, temporal correlation of scattering environment, and CSI estimation error. This thesis investigates different resource allocation schemes for the PA systems under practical constraints, with main contributions summarized as follows.First, in Paper A, we study the PA system in the presence of the so-called spatial mismatch problem, i.e., when the channel observed by the PA is not exactly the same as the one experienced by the RA. We derive closed-form expressions for the throughput-optimized rate adaptation, and evaluate the system performance in various temporally-correlated conditions for the scattering environment. Our results indicate that PA-assisted adaptive rate adaptation leads to a considerable performance improvement, compared to the cases with no rate adaptation. Then, to simplify e.g., various integral calculations as well as different operations such as parameter optimization, in Paper B, we propose a semi-linear approximation of the Marcum Q-function, and apply the proposed approximation to the evaluation of the PA system. We also perform deep analysis of the effect of various parameters such as antenna separation as well as CSI estimation error. As we show, our proposed approximation scheme enables us to analyze PA systems with high accuracy.The second part of the thesis focuses on improving the spectral efficiency of the PA system by involving the PA into data transmission. In Paper C, we analyze the outage-limited performance of PA systems using hybrid automatic repeat request (HARQ). With our proposed approach, the PA is used not only for improving the CSI in the retransmissions to the RA, but also for data transmission in the initial round.\ua0 As we show in the analytical and the simulation results, the combination of PA and HARQ protocols makes it possible to improve the spectral efficiency and adapt transmission parameters to mitigate the effect of spatial mismatch

    Predictor Antenna Systems: Exploiting Channel State Information for Vehicle Communications

    Get PDF
    Vehicle communication is one of the most important use cases in the fifth generation of wireless networks (5G). The growing demand for quality of service (QoS) characterized by performance metrics, such as spectrum efficiency, peak data rate, and outage probability, is mainly limited by inaccurate prediction/estimation of channel state information (CSI) of the rapidly changing environment around moving vehicles. One way to increase the prediction horizon of CSI in order to improve the QoS is deploying predictor antennas (PAs). A PA system consists of two sets of antennas typically mounted on the roof of a vehicle, where the PAs positioned at the front of the vehicle are used to predict the CSI observed by the receive antennas (RAs) that are aligned behind the PAs. In realistic PA systems, however, the actual benefit is affected by a variety of factors, including spatial mismatch, antenna utilization, temporal correlation of scattering environment, and CSI estimation error. This thesis investigates different resource allocation schemes for the PA systems under practical constraints.Comment: Licentiate thesis, Chalmers University of Technolog

    Making 5G adaptive antennas work for very fast moving vehicles

    No full text
    Wireless systems increasingly rely on the accurate knowledge at the transmitter side of the transmitter-to-receiver propagation channel, to optimize the transmission adaptively. Some candidate techniques for 5th generation networks need the channel knowledge for tens of antennas to perform adaptive beamforming from the base station towards the mobile terminal. These techniques reduce the radiated power and the energy consumption of the base station. Unfortunately, they fail to deliver the targeted quality of service to fast moving terminals such as connected vehicles. Indeed, due to the movement of the vehicle during the delay between channel estimation and data transmission, the channel estimate is outdated. In this paper, we propose three new schemes that exploit the "Predictor Antenna" concept. This recent concept is based on the observation that the position occupied by one antenna at the front of the vehicle, will later on be occupied by another antenna at the back. Estimating the channel of the "front" antenna can therefore later help beamforming towards the "back" antenna. Simulations show that our proposed schemes make adaptive beamforming work for vehicles moving at speeds up to 300 km/h
    corecore