36 research outputs found

    Moderate-density parity-check codes from projective bundles

    Get PDF
    New constructions for moderate-density parity-check (MDPC) codes using finite geometry are proposed. We design a parity-check matrix for the main family of binary codes as the concatenation of two matrices: the incidence matrix between points and lines of the Desarguesian projective plane and the incidence matrix between points and ovals of a projective bundle. A projective bundle is a special collection of ovals which pairwise meet in a unique point. We determine the minimum distance and the dimension of these codes, and we show that they have a natural quasi-cyclic structure. We consider alternative constructions based on an incidence matrix of a Desarguesian projective plane and compare their error-correction performance with regards to a modification of Gallagerā€™s bit-flipping decoding algorithm. In this setting, our codes have the best possible error-correction performance after one round of bit-flipping decoding given the parameters of the codeā€™s parity-check matrix

    Some new results on majority-logic codes for correction of random errors

    Get PDF
    The main advantages of random error-correcting majority-logic codes and majority-logic decoding in general are well known and two-fold. Firstly, they offer a partial solution to a classical coding theory problem, that of decoder complexity. Secondly, a majority-logic decoder inherently corrects many more random error patterns than the minimum distance of the code implies is possible. The solution to the decoder complexity is only a partial one because there are circumstances under which a majority-logic decoder is too complex and expensive to implement. [Continues.

    Improving the Efficiency of Quantum Circuits for Information Set Decoding

    Get PDF
    The NIST Post-Quantum standardization initiative, that entered its fourth round, aims to select asymmetric cryptosystems secure against attacker equipped with a quantum computer. Code-based cryptosystems are a promising option for Post-Quantum Cryptography (PQC), as neither classical nor quantum algorithms provide polynomial time solvers for its underlying hard problems. Indeed, to provide sound alternatives to lattice-based cryptosystems, NIST advanced all round 3 code-based cryptosystems to round 4. We present a complete implementation of a quantum circuit based on the Information Set Decoding (ISD) strategy, the best known one against code-based cryptosystems, providing quantitative measures for the security margin achieved with respect to the quantum-accelerated key recovery on AES, targeting both the current state-of-the-art approach and the NIST estimates. Our work improves the state-of-the-art, reducing the circuit depth from 2Ā¹ā¹ to 2Ā³ā° for all the parameters of the NIST selected cryptosystems. We further analyse recently proposed optimizations, showing that the overhead introduced by their implementation overcomes their asymptotic advantages. Finally, we address the concern brought forward in the latest NIST report on the parameters choice for the McEliece cryptosystem, showing that the parameter choice yields a computational effort which is slightly below the required target level

    Part I:

    Get PDF

    On Lowering the Error Floor of Short-to-Medium Block Length Irregular Low Density Parity Check Codes

    Get PDF
    Edited version embargoed until 22.03.2019 Full version: Access restricted permanently due to 3rd party copyright restrictions. Restriction set on 22.03.2018 by SE, Doctoral CollegeGallager proposed and developed low density parity check (LDPC) codes in the early 1960s. LDPC codes were rediscovered in the early 1990s and shown to be capacity approaching over the additive white Gaussian noise (AWGN) channel. Subsequently, density evolution (DE) optimized symbol node degree distributions were used to significantly improve the decoding performance of short to medium length irregular LDPC codes. Currently, the short to medium length LDPC codes with the lowest error floor are DE optimized irregular LDPC codes constructed using progressive edge growth (PEG) algorithm modifications which are designed to increase the approximate cycle extrinsic message degrees (ACE) in the LDPC code graphs constructed. The aim of the present work is to find efficient means to improve on the error floor performance published for short to medium length irregular LDPC codes over AWGN channels in the literature. An efficient algorithm for determining the girth and ACE distributions in short to medium length LDPC code Tanner graphs has been proposed. A cyclic PEG (CPEG) algorithm which uses an edge connections sequence that results in LDPC codes with improved girth and ACE distributions is presented. LDPC codes with DE optimized/ā€™goodā€™ degree distributions which have larger minimum distances and stopping distances than previously published for LDPC codes of similar length and rate have been found. It is shown that increasing the minimum distance of LDPC codes lowers their error floor performance over AWGN channels; however, there are threshold minimum distances values above which there is no further lowering of the error floor performance. A minimum local girth (edge skipping) (MLG (ES)) PEG algorithm is presented; the algorithm controls the minimum local girth (global girth) connected in the Tanner graphs of LDPC codes constructed by forfeiting some edge connections. A technique for constructing optimal low correlated edge density (OED) LDPC codes based on modified DE optimized symbol node degree distributions and the MLG (ES) PEG algorithm modification is presented. OED rate-Ā½ (n, k)=(512, 256) LDPC codes have been shown to have lower error floor over the AWGN channel than previously published for LDPC codes of similar length and rate. Similarly, consequent to an improved symbol node degree distribution, rate Ā½ (n, k)=(1024, 512) LDPC codes have been shown to have lower error floor over the AWGN channel than previously published for LDPC codes of similar length and rate. An improved BP/SPA (IBP/SPA) decoder, obtained by making two simple modifications to the standard BP/SPA decoder, has been shown to result in an unprecedented generalized improvement in the performance of short to medium length irregular LDPC codes under iterative message passing decoding. The superiority of the Slepian Wolf distributed source coding model over other distributed source coding models based on LDPC codes has been shown

    Contributions to Confidentiality and Integrity Algorithms for 5G

    Get PDF
    The confidentiality and integrity algorithms in cellular networks protect the transmission of user and signaling data over the air between users and the network, e.g., the base stations. There are three standardised cryptographic suites for confidentiality and integrity protection in 4G, which are based on the AES, SNOW 3G, and ZUC primitives, respectively. These primitives are used for providing a 128-bit security level and are usually implemented in hardware, e.g., using IP (intellectual property) cores, thus can be quite efficient. When we come to 5G, the innovative network architecture and high-performance demands pose new challenges to security. For the confidentiality and integrity protection, there are some new requirements on the underlying cryptographic algorithms. Specifically, these algorithms should: 1) provide 256 bits of security to protect against attackers equipped with quantum computing capabilities; and 2) provide at least 20 Gbps (Gigabits per second) speed in pure software environments, which is the downlink peak data rate in 5G. The reason for considering software environments is that the encryption in 5G will likely be moved to the cloud and implemented in software. Therefore, it is crucial to investigate existing algorithms in 4G, checking if they can satisfy the 5G requirements in terms of security and speed, and possibly propose new dedicated algorithms targeting these goals. This is the motivation of this thesis, which focuses on the confidentiality and integrity algorithms for 5G. The results can be summarised as follows.1. We investigate the security of SNOW 3G under 256-bit keys and propose two linear attacks against it with complexities 2172 and 2177, respectively. These cryptanalysis results indicate that SNOW 3G cannot provide the full 256-bit security level. 2. We design some spectral tools for linear cryptanalysis and apply these tools to investigate the security of ZUC-256, the 256-bit version of ZUC. We propose a distinguishing attack against ZUC-256 with complexity 2236, which is 220 faster than exhaustive key search. 3. We design a new stream cipher called SNOW-V in response to the new requirements for 5G confidentiality and integrity protection, in terms of security and speed. SNOW-V can provide a 256-bit security level and achieve a speed as high as 58 Gbps in software based on our extensive evaluation. The cipher is currently under evaluation in ETSI SAGE (Security Algorithms Group of Experts) as a promising candidate for 5G confidentiality and integrity algorithms. 4. We perform deeper cryptanalysis of SNOW-V to ensure that two common cryptanalysis techniques, guess-and-determine attacks and linear cryptanalysis, do not apply to SNOW-V faster than exhaustive key search. 5. We introduce two minor modifications in SNOW-V and propose an extreme performance variant, called SNOW-Vi, in response to the feedback about SNOW-V that some use cases are not fully covered. SNOW-Vi covers more use cases, especially some platforms with less capabilities. The speeds in software are increased by 50% in average over SNOW-V and can be up to 92 Gbps.Besides these works on 5G confidentiality and integrity algorithms, the thesis is also devoted to local pseudorandom generators (PRGs). 6. We investigate the security of local PRGs and propose two attacks against some constructions instantiated on the P5 predicate. The attacks improve existing results with a large gap and narrow down the secure parameter regime. We also extend the attacks to other local PRGs instantiated on general XOR-AND and XOR-MAJ predicates and provide some insight in the choice of safe parameters

    Any Errors in this Dissertation are Probably Fixable: Topics in Probability and Error Correcting Codes.

    Full text link
    We study two problems in coding theory, list-decoding and local-decoding. We take a probabilistic approach to these problems, in contrast to more typical algebraic approaches. In list-decoding, we settle two open problems about the list-decodability of some well-studied ensembles of codes. First, we show that random linear codes are optimally list-decodable, and second, we show that there exist Reed-Solomon codes which are (nearly) optimally list-decodable. Our approach uses high-dimensional probability. We extend this framework to apply to a large family of codes obtained through random operations. In local-decoding, we use expander codes to construct locally-correctible linear codes with rate approaching 1. Until recently, such codes were conjectured not to exist, and before this work the only known constructions relied on algebraic, rather than probabilistic and combinatorial, methods.PhDMathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108844/1/wootters_1.pd
    corecore