421,951 research outputs found
Flowers Associations and Mating Behavior or its Absence at Blossoms by \u3ci\u3eSpilomyia\u3c/i\u3e Spp. (Diptera, Syrphidae)
(excerpt)
Syrphid flies of many species visit blossoms to obtain nectar and pollen (see Waldbauer 1983 for referencesl. Many of these syrphids, in common with other insects (Parker 1978), also find mates at the blossoms. Males of these syrphid species make aerial patrols of inflorescences frequented by females, alternating these patrols with sitting on foliage. l11ey pounce on or chase insects of various species and swiftly initiate copulation with can specific females (Collet and Land 1975; Maier 1978; Maier and Waldbauer 1 979a,b)
Exponential Convergence of Cellular Dynamical Mean Field Theory: Reply to the comment by K. Aryanpour, Th. Maier and M. Jarrell (cond-mat/0301460)
We reply to the comment by K. Aryanpour, Th. Maier and M. Jarrell
(cond-mat/0301460) on our paper (Phys. Rev. B {\bf 65} 155112 (2002)). We
demonstrate using general arguments and explicit examples that whenever the
correlation length is finite, local observables converge exponentially fast in
the cluster size, , within Cellular Dynamical Mean Field Theory (CDMFT).
This is a faster rate of convergence than the behavior of the
Dynamical Cluster approximation (DCA) thus refuting the central assertion of
their comment.Comment: Reply to the comment by K. Aryanpour, Th. Maier and M. Jarrell
(cond-mat/0301460
Vaccinations, infections and antibacterials in the first grass pollen season of life and risk of later hayfever
Published source: Bremner, S. A., Carey, I. M., DeWilde, S., Richards, N., Maier, W. C., Hilton, S. R., Strachan, D. P. and Cook, D. G. (2007), Vaccinations, infections and antibacterials in the first grass pollen season of life and risk of later hayfever. Clinical & Experimental Allergy, 37: 512–517. doi: 10.1111/j.1365-2222.2007.02697.
Apocalypse recalled: the Book of Revelation after Christendom
Author: Harry O. Maier. Title: Apocalypse recalled. Publisher: Minneapolis : Fortress, 2002
Surface Plasmon Dispersion Relations in Chains of Metallic Nanoparticles: Exact Quasistatic Calculation
We calculate the surface plasmon dispersion relations for a periodic chain of
spherical metallic nanoparticles in an isotropic host, including all multipole
modes in a generalized tight-binding approach. For sufficiently small particles
(, where is the wave vector and is the interparticle
separation), the calculation is exact. The lowest bands differ only slightly
from previous point-dipole calculations provided the particle radius , but differ substantially at smaller separation. We also
calculate the dispersion relations for many higher bands, and estimate the
group velocity and the exponential decay length for energy
propagation for the lowest two bands due to single-grain damping. For
, the result for is in qualitative agreement with experiments
on gold nanoparticle chains, while for larger , such as ,
and are expected to be strongly -dependent because of the multipole
corrections. When , we predict novel percolation effects in the
spectrum, and find surprising symmetry in the plasmon band structure. Finally,
we reformulate the band structure equations for a Drude metal in the time
domain, and suggest how to include localized driving electric fields in the
equations of motion.Comment: 19 pages 3 figures To be published in Phy. Rev.
- …
