202,801 research outputs found
Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets
This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It
shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible
modifications arising during this process
Influence of the amount of permanent-magnet material in fractional-slot permanent-magnet synchronous machines
The efficiency of permanent-magnet (PM) synchronous machines with outer rotor and concentrated windings is investigated as a function of the mass of magnets used, keeping the power, volume, and mechanical air-gap thickness constant. In order to be useful for electric vehicle motors and wind turbine generators, the efficiency is computed in wide speed and torque ranges, including overload. For a given type and amount of magnets, the geometry of the machine and the efficiency map are computed by analytical models and finite-element models, taken into account the iron loss, copper loss, magnet loss, and pulsewidth-modulation loss. The models are validated by experiments. Furthermore, the demagnetization risk and torque ripple are studied as functions of the mass of magnets in the machine. The effect of the mass of magnets is investigated for several soft magnetic materials, for several combinations of number of poles and number of stator slots, and for both rare earth (NdFeB) magnets and ferrite magnets. It is observed that the amount of PM material can vary in a wide range with a minor influence on the efficiency, torque density, and torque ripple and with a limited demagnetization risk
Insertion Magnets
Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary
Design Report. The Large Hadron Collider (LHC) is one of the largest scientific
instruments ever built. Since opening up a new energy frontier for exploration
in 2010, it has gathered a global user community of about 7,000 scientists
working in fundamental particle physics and the physics of hadronic matter at
extreme temperature and density. To sustain and extend its discovery potential,
the LHC will need a major upgrade in the 2020s. This will increase its
luminosity (rate of collisions) by a factor of five beyond the original design
value and the integrated luminosity (total collisions created) by a factor ten.
The LHC is already a highly complex and exquisitely optimised machine so this
upgrade must be carefully conceived and will require about ten years to
implement. The new configuration, known as High Luminosity LHC (HL-LHC), will
rely on a number of key innovations that push accelerator technology beyond its
present limits. Among these are cutting-edge 11-12 tesla superconducting
magnets, compact superconducting cavities for beam rotation with ultra-precise
phase control, new technology and physical processes for beam collimation and
300 metre-long high-power superconducting links with negligible energy
dissipation. The present document describes the technologies and components
that will be used to realise the project and is intended to serve as the basis
for the detailed engineering design of HL-LHC.Comment: 19 pages, Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC)
: Preliminary Design Repor
Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines
A general analytical technique predicts the magnetic field distribution in brushless permanent magnet machines equipped with surface-mounted magnets. It accounts for the effects of both the magnets and the stator windings. The technique is based on two-dimensional models in polar coordinates and solves the governing Laplacian/quasi-Poissonian field equations in the airgap/magnet regions without any assumption regarding the relative recoil permeability of the magnets. The analysis works for both internal and external rotor motor topologies, and either radial or parallel magnetized magnets, as well as for overlapping and nonoverlapping stator windings. The paper validates results of the analytical models by finite-element analyses, for both slotless and slotted motor
Level splittings in exchange-biased spin tunneling
The level splittings in a dimer with the antiferromagnetic coupling between
two single-molecule magnets are calculated perturbatively for arbitrary spin.
It is found that the exchange interaction between two single-molecule magnets
plays an important role in the level splitting. The results are discussed in
comparison with the recent experiment.Comment: 12 pages, to be published in Phys. Rev.
- …
