81,983 research outputs found

    Magnetometer uses bismuth-selenide

    Get PDF
    Characteristics of bismuth-selenide magnetometer are described. Advantages of bismuth-selenide magnetometer over standard magnetometers are stressed. Thermal stability of bismuth-selenide magnetometer is analyzed. Linearity of output versus magnetic field over wide range of temperatures is reported

    Magnetic heading reference

    Get PDF
    This invention employs a magnetometer as a magnetic heading reference for a vehicle such as a small aircraft. The magnetometer is mounted on a directional dial in the aircraft in the vicinity of the pilot such that it is free to turn with the dial about the yaw axis of the aircraft. The invention includes a circuit for generating a signal proportional to the northerly turning error produced in the magnetometer due to the vertical component of the earth's magnetic field. This generated signal is then subtracted from the output of the magnetometer to compensate for the northerly turning error

    Magnetometer experiment

    Get PDF
    Mariner IV space probe magnetometer observations of interplanetary magnetic field transition

    Kinetic Inductance Magnetometer

    Full text link
    Ultrasensitive magnetic field detection is utilized in the fields of science, medicine and industry. We report on a novel magnetometer relying on the kinetic inductance of superconducting material. The kinetic inductance exhibits a non-linear response with respect to DC current, a fact that is exploited by applying magnetic flux through a superconducting loop to generate a shielding current and a change in the inductance of the loop. The magnetometer is arranged into a resonator, allowing readout through a transmission measurement that makes the device compatible with radio frequency multiplexing techniques. The device is fabricated using a single thin-film layer of NbN, simplifying the fabrication process compared to existing magnetometer technologies considerably. Our experimental data, supported by theory, demonstrates a magnetometer having potential to replace established technology in applications requiring ultra-high sensitivity.Comment: 16 pages, 6 figure

    Cavity Optomechanical Magnetometer

    Get PDF
    A cavity optomechanical magnetometer is demonstrated where the magnetic field induced expansion of a magnetostrictive material is transduced onto the physical structure of a highly compliant optical microresonator. The resulting motion is read out optically with ultra-high sensitivity. Detecting the magnetostrictive deformation of Terfenol-D with a toroidal whispering gallery mode (TWGM) resonator a peak sensitivity of 400 nT/Hz^.5 was achieved with theoretical modelling predicting that sensitivities of up to 500 fT/Hz^.5 may be possible. This chip-based magnetometer combines high-sensitivity and large dynamic range with small size and room temperature operation

    Detection of radio frequency magnetic fields using nonlinear magneto-optical rotation

    Get PDF
    We describe a room-temperature alkali-metal atomic magnetometer for detection of small, high frequency magnetic fields. The magnetometer operates by detecting optical rotation due to the precession of an aligned ground state in the presence of a small oscillating magnetic field. The resonance frequency of the magnetometer can be adjusted to any desired value by tuning the bias magnetic field. We demonstrate a sensitivity of 100pG/Hz(RMS)100\thinspace{\rm pG/\sqrt{Hz}\thinspace(RMS)} in a 3.5 cm diameter, paraffin coated cell. Based on detection at the photon shot-noise limit, we project a sensitivity of 20pG/Hz(RMS)20\thinspace{\rm pG/\sqrt{Hz}\thinspace(RMS)}.Comment: 6 pages, 6 figure

    Magnetometer suitable for Earth field measurement based on transient atomic response

    Full text link
    We describe the development of a simple atomic magnetometer using 87^{87}Rb vapor suitable for Earth magnetic field monitoring. The magnetometer is based on time-domain determination of the transient precession frequency of the atomic alignment around the measured field. A sensitivity of 1.5 nT/Hz\sqrt{Hz} is demonstrated on the measurement of the Earth magnetic field in the laboratory. We discuss the different parameters determining the magnetometer precision and accuracy and predict a sensitivity of 30 pT/Hz\sqrt{Hz}Comment: 6 pages, 5 figure

    Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer?

    Full text link
    Noise properties of an idealized atomic magnetometer that utilizes spin squeezing induced by a continuous quantum nondemolition measurement are considered. Such a magnetometer measures spin precession of NN atomic spins by detecting optical rotation of far-detuned light. Fundamental noise sources include the quantum projection noise and the photon shot-noise. For measurement times much shorter than the spin-relaxation time observed in the absence of light (τrel\tau_{\rm rel}) divided by N\sqrt{N}, the optimal sensitivity of the magnetometer scales as N3/4N^{-3/4}, so an advantage over the usual sensitivity scaling as N1/2N^{-1/2} can be achieved. However, at longer measurement times, the optimized sensitivity scales as N1/2N^{-1/2}, as for a usual shot-noise limited magnetometer. If strongly squeezed probe light is used, the Heisenberg uncertainty limit may, in principle, be reached for very short measurement times. However, if the measurement time exceeds τrel/N\tau_{\rm rel}/N, the N1/2N^{-1/2} scaling is again restored.Comment: Some details of calculations can be found in a companion note: physics/040712

    Flux qubit as a sensor for a magnetometer with quantum limited sensitivity

    Full text link
    We propose to use the quantum properties of a superconducting flux qubit in the construction of a magnetometer with quantum limited sensitivity. The main advantage of a flux qubit is that its noise is rather low, and its transfer functions relative to the measured flux can be made to be about 10mV/Φ0\Phi_0, which is an order of magnitude more than the best value for a conventional SQUID magnetometer. We analyze here the voltage-to-flux, the phase-to-flux transfer functions and the main noise sources. We show that the experimental characteristics of a flux qubit, obtained in recent experiments, allow the use of a flux qubit as magnetometer with energy resolution close to the Planck constant.Comment: 3 pages, 6 figure
    corecore