2,261 research outputs found

    Robot-assisted fMRI assessment of early brain development

    No full text
    Preterm birth can interfere with the intra-uterine mechanisms driving cerebral development during the third trimester of gestation and often results in severe neuro-developmental impairments. Characterizing normal/abnormal patterns of early brain maturation could be fundamental in devising and guiding early therapeutic strategies aimed at improving clinical outcome by exploiting the enhanced early neuroplasticity. Over the last decade the morphology and structure of the developing human brain has been vastly characterized; however the concurrent maturation of brain function is still poorly understood. Task-dependent fMRI studies of the preterm brain can directly probe the emergence of fundamental neuroscientific notions and also provide clinicians with much needed early diagnostic and prognostic information. To date, task-fMRI studies of the preterm population have however been hampered by methodological challenges leading to inconsistent and contradictory results. In this thesis I present a modular and flexible system to provide clinicians and researchers with a simple and reliable solution to deliver computer-controlled stimulation patterns to preterm infants during task-fMRI experiments. The system is primarily aimed at studying the developing sensori-motor system as preterm infants are often affected by neuro-motor dysfunctions such as cerebral palsy. Wrist and ankle robotic stimulators were developed and firstly used to study the emerging somatosensory “homunculus”. The wrist robotic stimulator was then used to characterize the development of the sensori-motor system throughout the mid-to-late preterm period. An instrumented pacifier system was also developed to explore the potential sensorimotor modulation of early sucking activity; however, despite its clear potential to be employed in future fMRI studies, results have not yet been obtained on preterm infants. Functional difficulties associated with prematurity are likely to extend to multi-sensory integration, and the olfactory system currently remains under-investigated despite its clear developmental importance. A custom olfactometer was developed and used to assess its early functionality.Open Acces

    An fMRI Study of Command Following and Communication Using Overt and Covert Motor Responses: Implications for Disorders of Consciousness

    Get PDF
    We used functional magnetic resonance imaging (fMRI) to explore neural mechanisms of command following or communicating using executed or imagined movements, in order to understand why most covertly aware patients cannot communicate. 15 healthy participants executed or imagined arm movements that were either selected by them or pre-determined. We also explored non-volitional motor activity by passively moving participants. Response selection involved greater activity in high-level associative areas in frontal and parietal regions than following commands. Furthermore, there was no interaction between response and modality. Neural activity during passive movement exceeded that of active (volitional) movement in sensorimotor regions. Our results suggest that the ability to select between motor responses is not dependent on how that response is expressed (via motor execution/imagery). They also suggest a potential neural basis of the distinction in cognitive abilities seen in DOCs. Finally, passive movement could be applied to study unresponsive patients’ motor systems

    Task-based fMRI investigation of the newborn brain: sensorimotor development and learning

    Get PDF
    Human brain development relies upon the interaction between genetic and environmental factors, and the latter plays a critical role during the perinatal period. In this period, neuronal plasticity through experience-dependent activity is enhanced in the sensory systems, and drive the maturation of the brain. While plasticity is essential for maturation, it is also a source of vulnerability as altered early experiences may interact with the normal course of development. This is particularly evident in infants born preterm, who are prematurely exposed to a sensory-rich environment, and at risk or neurodevelopmental disorders. In keeping with the somatosensory system being at a critical period for development during late gestation, sensorimotor disorders, such as cerebral palsy, are more common in preterm compared with full-term born infants. It is therefore important to understand the normal trajectory of sensorimotor development and how this may be moulded by early sensory experiences. It is well acknowledged that the sensorimotor cortex is topographically organised so that different body parts map to a specific location within the cortex and this map is generally referred to as the ``homunculus". Although the somatotopy has been well characterised in the mature brain, it remains unknown when this organisation emerges during development. Animal studies hints that functional cortical maps might emerge across the equivalent period to the third trimester of human gestation, nevertheless there is currently no evidence. Therefore, I first investigated the topography of the preterm somatosensory cortex in a group of newborn infants. In this purpose I used fMRI and automated robotic tools and measured the functional responses to different sensory simulations (delivered to the mouth, wrists and ankles). The results provide evidence that it is possible to identify distinct areas in the somatosensory cortex devoted to different body parts even in the preterm brain supporting the presence of an immature \textit{homunculus}. Next, I wanted to investigate how activity and development in the sensorimotor system are influenced by experience. Experience-dependent plasticity is the basis of learning (e.g. adaptive behaviour), which is observed in newborn infants. Associative learning in particular has been widely investigated in infants, however, the underlining neuronal processes have previously been poorly understood. To study the neural correlates of associative learning in newborn infants, I developed and used a classical conditioning paradigm in combination with robot-assisted fMRI. The results confirm that associative learning can occur even at this early stage of life and with non-aversive stimuli. More importantly, I could observe learning-induced changes in brain activity within the primary sensory cortices, suggesting that such experience can shape cortical circuitry and is likely to influence early brain development.Open Acces

    Sensorimotor experience in virtual environments

    Get PDF
    The goal of rehabilitation is to reduce impairment and provide functional improvements resulting in quality participation in activities of life, Plasticity and motor learning principles provide inspiration for therapeutic interventions including movement repetition in a virtual reality environment, The objective of this research work was to investigate functional specific measurements (kinematic, behavioral) and neural correlates of motor experience of hand gesture activities in virtual environments stimulating sensory experience (VE) using a hand agent model. The fMRI compatible Virtual Environment Sign Language Instruction (VESLI) System was designed and developed to provide a number of rehabilitation and measurement features, to identify optimal learning conditions for individuals and to track changes in performance over time. Therapies and measurements incorporated into VESLI target and track specific impairments underlying dysfunction. The goal of improved measurement is to develop targeted interventions embedded in higher level tasks and to accurately track specific gains to understand the responses to treatment, and the impact the response may have upon higher level function such as participation in life. To further clarify the biological model of motor experiences and to understand the added value and role of virtual sensory stimulation and feedback which includes seeing one\u27s own hand movement, functional brain mapping was conducted with simultaneous kinematic analysis in healthy controls and in stroke subjects. It is believed that through the understanding of these neural activations, rehabilitation strategies advantaging the principles of plasticity and motor learning will become possible. The present research assessed successful practice conditions promoting gesture learning behavior in the individual. For the first time, functional imaging experiments mapped neural correlates of human interactions with complex virtual reality hands avatars moving synchronously with the subject\u27s own hands, Findings indicate that healthy control subjects learned intransitive gestures in virtual environments using the first and third person avatars, picture and text definitions, and while viewing visual feedback of their own hands, virtual hands avatars, and in the control condition, hidden hands. Moreover, exercise in a virtual environment with a first person avatar of hands recruited insular cortex activation over time, which might indicate that this activation has been associated with a sense of agency. Sensory augmentation in virtual environments modulated activations of important brain regions associated with action observation and action execution. Quality of the visual feedback was modulated and brain areas were identified where the amount of brain activation was positively or negatively correlated with the visual feedback, When subjects moved the right hand and saw unexpected response, the left virtual avatar hand moved, neural activation increased in the motor cortex ipsilateral to the moving hand This visual modulation might provide a helpful rehabilitation therapy for people with paralysis of the limb through visual augmentation of skills. A model was developed to study the effects of sensorimotor experience in virtual environments, and findings of the effect of sensorimotor experience in virtual environments upon brain activity and related behavioral measures. The research model represents a significant contribution to neuroscience research, and translational engineering practice, A model of neural activations correlated with kinematics and behavior can profoundly influence the delivery of rehabilitative services in the coming years by giving clinicians a framework for engaging patients in a sensorimotor environment that can optimally facilitate neural reorganization

    Tactile Arrays for Virtual Textures

    Get PDF
    This thesis describes the development of three new tactile stimulators for active touch, i.e. devices to deliver virtual touch stimuli to the fingertip in response to exploratory movements by the user. All three stimulators are designed to provide spatiotemporal patterns of mechanical input to the skin via an array of contactors, each under individual computer control. Drive mechanisms are based on piezoelectric bimorphs in a cantilever geometry. The first of these is a 25-contactor array (5 × 5 contactors at 2 mm spacing). It is a rugged design with a compact drive system and is capable of producing strong stimuli when running from low voltage supplies. Combined with a PC mouse, it can be used for active exploration tasks. Pilot studies were performed which demonstrated that subjects could successfully use the device for discrimination of line orientation, simple shape identification and line following tasks. A 24-contactor stimulator (6 × 4 contactors at 2 mm spacing) with improved bandwidth was then developed. This features control electronics designed to transmit arbitrary waveforms to each channel (generated on-the-fly, in real time) and software for rapid development of experiments. It is built around a graphics tablet, giving high precision position capability over a large 2D workspace. Experiments using two-component stimuli (components at 40 Hz and 320 Hz) indicate that spectral balance within active stimuli is discriminable independent of overall intensity, and that the spatial variation (texture) within the target is easier to detect at 320 Hz that at 40 Hz. The third system developed (again 6 × 4 contactors at 2 mm spacing) was a lightweight modular stimulator developed for fingertip and thumb grasping tasks; furthermore it was integrated with force-feedback on each digit and a complex graphical display, forming a multi-modal Virtual Reality device for the display of virtual textiles. It is capable of broadband stimulation with real-time generated outputs derived from a physical model of the fabric surface. In an evaluation study, virtual textiles generated from physical measurements of real textiles were ranked in categories reflecting key mechanical and textural properties. The results were compared with a similar study performed on the real fabrics from which the virtual textiles had been derived. There was good agreement between the ratings of the virtual textiles and the real textiles, indicating that the virtual textiles are a good representation of the real textiles and that the system is delivering appropriate cues to the user

    Optimization of Proprioceptive Stimulation Frequency and Movement Range for fMRI

    Get PDF
    For vision, audition and tactile sense, the optimal stimulus frequency for fMRI is somewhat known. For proprioception, i.e., the “movement sense”, however, the optimal frequency is unknown. We studied the effect of passive-finger-movement frequency on proprioceptive fMRI responses using a novel pneumatic-movement actuator. Eleven healthy right-handed volunteers participated in the study. The movement actuator passively moved the participant’s right index finger at frequencies of 0.3, 1, 3, 6, 9, or 12 Hz in a blocked design. A functional localizer was used to define regions-of-interest in SI and SII cortices. In addition, effect of movement range on the fMRI responses was tested in a separate session with 1, 3, 5, and 7 mm movement ranges at a fixed 2 Hz frequency. In primary somatosensory (SI) cortex, the responses were stronger at 3 Hz than at 0.3 Hz (p < 0.001) or 1 Hz (p < 0.05), and at ≥6 Hz than 0.3 Hz (p < 0.001 for frequencies ≥ 6 Hz). In secondary somatosensory (SII) cortex, all movements, except at 0.3 Hz, elicited significant responses of similar strength. In addition, 6, 9, and 12-Hz movements elicited a significant offset response in both SI and SII cortices (p < 0.001–0.05). SI cortex required a total stimulation duration of 4 min to elicit significant activations at the group-level whereas for SII cortex 1 min 20 s was sufficient. Increase in the movement range led to stronger responses in SI cortex, but not in SII cortex. Movements above 3 Hz elicited the strongest SI cortex responses, and increase in the movement range enhanced the response strength. We thus recommend that movements at 3–6 Hz with a movement range of 5 mm or higher to be used in future studies of proprioception. Our results are in-line with previous fMRI and PET studies using tactile or median nerve stimulation at different stimulation frequencies

    Development of a Unique Whole-Brain Model for Upper Extremity Neuroprosthetic Control

    Get PDF
    Neuroprostheses are at the forefront of upper extremity function restoration. However, contemporary controllers of these neuroprostheses do not adequately address the natural brain strategies related to planning, execution and mediation of upper extremity movements. These lead to restrictions in providing complete and lasting restoration of function. This dissertation develops a novel whole-brain model of neuronal activation with the goal of providing a robust platform for an improved upper extremity neuroprosthetic controller. Experiments (N=36 total) used goal-oriented upper extremity movements with real-world objects in an MRI scanner while measuring brain activation during functional magnetic resonance imaging (fMRI). The resulting data was used to understand neuromotor strategies using brain anatomical and temporal activation patterns. The study\u27s fMRI paradigm is unique and the use of goal-oriented movements and real-world objects are crucial to providing accurate information about motor task strategy and cortical representation of reaching and grasping. Results are used to develop a novel whole-brain model using a machine learning algorithm. When tested on human subject data, it was determined that the model was able to accurately distinguish functional motor tasks with no prior knowledge. The proof of concept model created in this work should lead to improved prostheses for the treatment of chronic upper extremity physical dysfunction

    Insights and Perspectives on Sensory-Motor Integration and Rehabilitation

    Get PDF
    The present review focuses on the flow and interaction of somatosensory-motor signals in the central and peripheral nervous system. Specifically, where incoming sensory signals from the periphery are processed and interpreted to initiate behaviors, and how ongoing behaviors produce sensory consequences encoded and used to fine-tune subsequent actions. We describe the structure-function relations of this loop, how these relations can be modeled and aspects of somatosensory-motor rehabilitation. The work reviewed here shows that it is imperative to understand the fundamental mechanisms of the somatosensory-motor system to restore accurate motor abilities and appropriate somatosensory feedback. Knowledge of the salient neural mechanisms of sensory-motor integration has begun to generate innovative approaches to improve rehabilitation training following neurological impairments such as stroke. The present work supports the integration of basic science principles of sensory-motor integration into rehabilitation procedures to create new solutions for sensory-motor disorders
    corecore