47,700 research outputs found
Photoemission study of the SiO₂conversion mechanism to magnesium silicate
The objective of this work is to investigate interface chemistries which minimize the interfacial silicon oxide transition region at Si/high-k dielectric interfaces. We report on the mechanism by which a silicon native oxide layer is converted into magnesium silicate. The deposition of metal Mg onto a SiO native oxide surface resulted in the formation of a magnesium silicide in addition to substochiometric silicon oxides and a significant decrease in the oxidised silicon signal. Annealing to 300 °C resulted in the decomposition of the magnesium silicide, oxidation of the Mg, and the desorption of excess metallic Mg. Subsequent annealing to 500 °C resulted in converting the SiO2 into magnesium silicate. The results suggest that the decomposition of the Mg silicide in the presence of the residual native oxide facilitates silicate formation at 500 °C. Due to the reported thermal stability of Mg silicate it is suggested that this process may be beneficial in modifying the interface characteristics of the Si/high-k dielectric interface which has potentially significant implications for future semiconductor device generations
The shape and composition of interstellar silicate grains
We investigate the composition and shape distribution of silicate dust grains
in the interstellar medium. The effect of the amount of magnesium in the
silicate lattice is studied. We fit the spectral shape of the interstellar 10
mu extinction feature as observed towards the galactic center. We use very
irregularly shaped coated and non-coated porous Gaussian Random Field particles
as well as a statistical approach to model shape effects. For the dust
materials we use amorphous and crystalline silicates with various composition
and SiC. The results of our analysis of the 10 mu feature are used to compute
the shape of the 20 mu silicate feature and to compare this with observations.
By using realistic particle shapes we are, for the first time, able to derive
the magnesium fraction in interstellar silicates. We find that the interstellar
silicates are highly magnesium rich (Mg/(Fe+Mg)>0.9) and that the stoichiometry
lies between pyroxene and olivine type silicates. This composition is not
consistent with that of the glassy material found in GEMS in interplanetary
dust particles indicating that these are, in general, not unprocessed remnants
from the interstellar medium. Also, we find a significant fraction of SiC
(~3%). We discuss the implications of our results for the formation and
evolutionary history of cometary and circumstellar dust. We argue that the fact
that crystalline silicates in cometary and circumstellar grains are almost
purely magnesium silicates is a natural consequence of our findings that the
amorphous silicates from which they were formed were already magnesium rich.Comment: Accepted for publication in A&
Corrosion resistant thermal barrier coating
A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates
Gels as battery separators for soluble electrode cells
Gels are formed from silica powders and hydrochloric acid. The gels are then impregnated into a polymeric foam and the resultant sheet material is then used in applications where the transport of chloride ions is desired. Specifically disclosed is the utilization of the sheet in electrically rechargeable redox flow cells which find application in bulk power storage systems
Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars III. Iron, Magnesium, and Silicon
We use thermochemical equilibrium calculations to model iron, magnesium, and
silicon chemistry in the atmospheres of giant planets, brown dwarfs, extrasolar
giant planets (EGPs), and low-mass stars. The behavior of individual Fe-, Mg-,
and Si-bearing gases and condensates is determined as a function of
temperature, pressure, and metallicity. Our results are thus independent of any
particular model atmosphere. The condensation of Fe metal strongly affects iron
chemistry by efficiently removing Fe-bearing species from the gas phase.
Monatomic Fe is the most abundant Fe-bearing gas throughout the atmospheres of
EGPs and L dwarfs and in the deep atmospheres of giant planets and T dwarfs.
Mg- and Si-bearing gases are effectively removed from the atmosphere by
forsterite (Mg2SiO4) and enstatite (MgSiO3) cloud formation. Monatomic Mg is
the dominant magnesium gas throughout the atmospheres of EGPs and L dwarfs and
in the deep atmospheres of giant planets and T dwarfs. Silicon monoxide (SiO)
is the most abundant Si-bearing gas in the deep atmospheres of brown dwarfs and
EGPs, whereas SiH4 is dominant in the deep atmosphere of Jupiter and other gas
giant planets. Several other Fe-, Mg-, and Si-bearing gases become increasingly
important with decreasing effective temperature. In principle, a number of Fe,
Mg, and Si gases are potential tracers of weather or diagnostic of temperature
in substellar atmospheres.Comment: 42 pages, 15 figures, submitted to the Astrophysical Journa
The Spitzer Spectroscopic Survey of S-type Stars
S-type AGB stars are thought to be in the transitional phase between M-type
and C-type AGB stars. Because of their peculiar chemical composition, one may
expect a strong influence of the stellar C/O ratio on the molecular chemistry
and the mineralogy of the circumstellar dust. In this paper, we present a large
sample of 87 intrinsic galactic S-type AGB stars, observed at infrared
wavelengths with the Spitzer Space Telescope, and supplemented with
ground-based optical data. On the one hand, we derive the stellar parameters
from the optical spectroscopy and photometry, using a grid of model
atmospheres. On the other, we decompose the infrared spectra to quantify the
flux-contributions from the different dust species. Finally, we compare the
independently determined stellar parameters and dust properties. For the stars
without significant dust emission, we detect a strict relation between the
presence of SiS absorption in the Spitzer spectra and the C/O ratio of the
stellar atmosphere. These absorption bands can thus be used as an additional
diagnostic for the C/O ratio. For stars with significant dust emission, we
define three groups, based on the relative contribution of certain dust species
to the infrared flux. We find a strong link between group-membership and C/O
ratio. We show that these groups can be explained by assuming that the
dust-condensation can be cut short before silicates are produced, while the
remaining free atoms and molecules can then form the observed magnesium
sulfides or the carriers of the unidentified 13 and 20 micron features.
Finally, we present the detection of emission features attributed to molecules
and dust characteristic to C-type stars, such as molecular SiS, hydrocarbons
and magnesium sulfide grains. We show that we often detect magnesium sulfides
together with molecular SiS and we propose that it is formed by a reaction of
SiS molecules with Mg.Comment: Accepted for publication in A&
The effects of MgO, Na2O and SO3 on industrial clinkering process: phase composition, polymorphism, microstructure and hydration, using a multidisciplinary approach
Preprint publicado en: Materials Characterization Volume 155, September 2019, 109809The present investigation deals with how minor elements (their oxides: MgO, Na2O and SO3) in industrial kiln
feeds affect (i) chemical reactions upon clinkering, (ii) resulting phase composition and microstructure of
clinker, (iii) hydration process during cement production.
Our results show that all these points are remarkably sensitive to the combination and interference effects
between the minor chemical species mentioned above.
Upon clinkering, all the industrial raw meals here used exhibit the same formation temperature and amount
of liquid phase. Minor elements are preferentially hosted by secondary phases, such as periclase. Conversely, the
growth rate of the main clinker phases (alite and belite) is significantly affected by the nature and combination
of minor oxides. MgO and Na2O give a very fast C3S formation rate at T > 1450 K, whereas Na2O and SO3 boost
C2S
After heating, if SO3 occurs in combination with MgO and/or Na2O, it does not inihibit the C3S crystallisation
as expected. Rather, it promotes the stabilisation of M1-C3S, thus indirectly influencing the aluminate content,
too. MgO increseases the C3S amount and promotes the stabilisation of M3-C3S, when it is in combination with
Na2O. Na2O seems to be mainly hosted by calcium aluminate structure, but it does not induce the stabilisation of
the orhtorhombic polymorph, as supposed to occur. Such features play a key role in predicting the physicalmechanical
performance of a final cement (i.e. rate of hydration and hardening) when used as a bulding material.The present study has been partly funded by the project PRIN 2017
(2017L83S77), of the Italian Ministry for Education, University and
Research (MIUR)
Tomography of silicate dust around M-type AGB stars I. Diagnostics based on dynamical models
The heavy mass loss observed in evolved asymptotic giant branch stars is
usually attributed to a two-step process: atmospheric levitation by
pulsation-induced shock waves, followed by radiative acceleration of newly
formed dust grains. Detailed wind models suggest that the outflows of M-type
AGB stars may be triggered by photon scattering on Fe-free silicates with grain
sizes of about 0.1 - 1 m. Due to the low grain temperature, these Fe-free
silicates can condense close to the star, but they do not produce the
characteristic mid-IR features that are often observed in M-type AGB stars.
However, it is probable that the silicate grains are gradually enriched with Fe
as they move away from the star, to a degree where the grain temperature stays
below the sublimation temperature, but is high enough to produce emission
features. We investigate whether differences in grain temperature in the inner
wind region, which are related to changes in the grain composition, can be
detected with current interferometric techniques, in order to put constraints
on the wind mechanism. To investigate this we use radial structures of the
atmosphere and wind of an M-type AGB star, produced with the 1D
radiation-hydrodynamical code DARWIN. The spectral energy distribution is found
to be a poor indicator of different temperature profiles and therefore is not a
good tool for distinguishing different scenarios of changing grain composition.
However, spatially resolved interferometric observations have promising
potential. They show signatures even for Fe-free silicates (found at 2-3
stellar radii), in contrast to the spectral energy distribution. Observations
with baselines that probe spatial scales of about 4 stellar radii and beyond
are suitable for tracing changes in grain composition, since this is where
effects of Fe enrichment should be found.Comment: Accepted for publication in Section 8. Stellar atmospheres of
Astronomy and Astrophysics. The official date of acceptance is 07/09/2017. 9
pages, 7 figures, 4 figures in appendi
- …
