3 research outputs found

    MAGMA network behavior classifier for malware traffic

    Get PDF
    Malware is a major threat to security and privacy of network users. A large variety of malware is typically spread over the Internet, hiding in benign traffic. New types of malware appear every day, challenging both the research community and security companies to improve malware identification techniques. In this paper we present MAGMA, MultilAyer Graphs for MAlware detection, a novel malware behavioral classifier. Our system is based on a Big Data methodology, driven by real-world data obtained from traffic traces collected in an operational network. The methodology we propose automatically extracts patterns related to a specific input event, i.e., a seed, from the enormous amount of events the network carries. By correlating such activities over (i) time, (ii) space, and (iii) network protocols, we build a Network Connectivity Graph that captures the overall “network behavior” of the seed. We next extract features from the Connectivity Graph and design a supervised classifier. We run MAGMA on a large dataset collected from a commercial Internet Provider where 20,000 Internet users generated more than 330 million events. Only 42,000 are flagged as malicious by a commercial IDS, which we consider as an oracle. Using this dataset, we experimentally evaluate MAGMA accuracy and robustness to parameter settings. Results indicate that MAGMA reaches 95% accuracy, with limited false positives. Furthermore, MAGMA proves able to identify suspicious network events that the IDS ignored

    Network Traffic Measurements, Applications to Internet Services and Security

    Get PDF
    The Internet has become along the years a pervasive network interconnecting billions of users and is now playing the role of collector for a multitude of tasks, ranging from professional activities to personal interactions. From a technical standpoint, novel architectures, e.g., cloud-based services and content delivery networks, innovative devices, e.g., smartphones and connected wearables, and security threats, e.g., DDoS attacks, are posing new challenges in understanding network dynamics. In such complex scenario, network measurements play a central role to guide traffic management, improve network design, and evaluate application requirements. In addition, increasing importance is devoted to the quality of experience provided to final users, which requires thorough investigations on both the transport network and the design of Internet services. In this thesis, we stress the importance of users’ centrality by focusing on the traffic they exchange with the network. To do so, we design methodologies complementing passive and active measurements, as well as post-processing techniques belonging to the machine learning and statistics domains. Traffic exchanged by Internet users can be classified in three macro-groups: (i) Outbound, produced by users’ devices and pushed to the network; (ii) unsolicited, part of malicious attacks threatening users’ security; and (iii) inbound, directed to users’ devices and retrieved from remote servers. For each of the above categories, we address specific research topics consisting in the benchmarking of personal cloud storage services, the automatic identification of Internet threats, and the assessment of quality of experience in the Web domain, respectively. Results comprise several contributions in the scope of each research topic. In short, they shed light on (i) the interplay among design choices of cloud storage services, which severely impact the performance provided to end users; (ii) the feasibility of designing a general purpose classifier to detect malicious attacks, without chasing threat specificities; and (iii) the relevance of appropriate means to evaluate the perceived quality of Web pages delivery, strengthening the need of users’ feedbacks for a factual assessment

    Macroscopic view of malware in home networks

    No full text
    Malicious activities on the Web are increasingly threatening users in the Internet. Home networks are one of the prime targets of the attackers to host malware, commonly exploited as a stepping stone to further launch a variety of attacks. Due to diversification, existing security solutions often fail to detect malicious activities that remain hidden and pose threats to users' security and privacy. Characterizing behavioral patterns of known malware can help to improve the classification accuracy of threats. More importantly, as different malware might share commonalities, studying the behavior of known malware could help the detection of previously unknown malicious activities. We pose the research question if it is possible to characterize such behavioral patterns analyzing the traffic from known infected clients. We present our quest to discover such characterizations. Results show that commonalities arise but their identification may require some ingenuity. We also present our discovery of malicious activities that were left undetected by commercial ID
    corecore