117,018 research outputs found
Autoxidation of lipids in parchment
Historic parchment is a macromolecular material, which is complex due to its natural origin, inhomogeneity of the skin structure, unknown environmental history and potential localised degradation. Most research into its stability has so far focussed on thermal and structural methods of analyses.
Using gas chromatographic analysis of the atmosphere surrounding parchment during oxidation, we provide the experimental evidence on the production of volatile aldehydes, which can be the products of lipid autoxidation. Oxidation of parchment with different aldehyde emissions was additionally followed in situ using chemiluminometry and the same techniques were used to evaluate the oxidation of differently delipidised parchment. It was shown that the production of peroxides and the emission of aldehydes from the material decrease with lower lipid content. Building on this evidence, we can conclude that the presence of lipids (either initially present in the skin or resulting from conservation intervention) leads to oxidative degradation of collagen and that the non-destructive analysis of the emission of volatiles could be used as a quick tool for evaluation of parchment stability
Urinary cholesterol: its association with a macromolecular protein- lipid complex
The cholesterol-containing complexes in the urine of normal subjects and patients with diseases accompanied by hyperexcretion of urinary cholesterol were characterized. In normal subjects, the major portion of the recovered urinary cholesterol was eluted in the void volume fractions after gel chromatography on Bio-Gel A-5m; this suggested an association with a macromolecular complex above 5 X 10(6) daltons. A comparable elution pattern was seen in most of the urines of the patients with benign or malignant diseases of the kidneys or the urogenital tract. However, in single patients with hyperexcretion of urinary cholesterol, considerable amounts of cholesterol were detected in the included volume of the column. This was caused by additional excretion of high density lipoproteins or both high and low density lipoproteins in the urine which could be identified in these fractions by agarose electrophoresis and immunodiffusion. These results indicate that the macromolecular complex represents the majority of the recovered urinary cholesterol in normal subjects and in disease states with known hyperexcretion. Macroscopically, the isolated cholesterol- containing complex in the void volume fractions was turbid, and electron microscopy showed lipoprotein-like particles with diameters ranging from 300 to 700 A. The chemical analysis revealed median values of protein (46.0%), triglycerides (16.3%), cholesterol (8.2%), and phospholipids (29.5%) in normal subjects and comparable results in the patients with benign or malignant diseases of the kidney and the urogenital tract. Ethanolamine glycerophospholipids, phosphatidylcholine, sphingomyelin, and phosphatidylserine were the main phospholipid components. After ultracentrifugation in a CsCl gradient, the cholesterol-containing complex was found between densities 1.1 and 1.3 g/ml. By SDS polyacrylamide electrophoresis, up to 17 protein subunits in the molecular weight range of 14,000 to 87,500 were separated. Immunodiffusion studies showed in about 40% precipitin lines against anti-human albumin, but no reactions against anti-human apoHDL and anti-human apoLDL. However, immunodiffusion of the macromolecular complex against anti-liver-specific and anti-kidney- specific lipoproteins revealed single precipitin lines. In conclusion, the isolated cholesterol-containing urinary complex showed many characteristics of membrane-associated protein-lipid particles of the human kidney and even the liver. These proteolipids are the major source of urinary cholesterol in normal and disease states
Structural Dynamics of Free Proteins in Diffraction
Among the macromolecular patterns of biological significance, right-handed α-helices are perhaps the most abundant structural motifs. Here, guided by experimental findings, we discuss both ultrafast initial steps and longer-time-scale structural dynamics of helix-coil
transitions induced by a range of temperature jumps in large, isolated macromolecular ensembles of an α-helical protein segment thymosin β_9 (Tβ_9), and elucidate the comprehensive picture of (un)folding. In continuation of an earlier theoretical work from this laboratory that utilized a simplistic structure-scrambling algorithm combined
with a variety of self-avoidance thresholds to approximately model helix-coil transitions in Tβ_9, in the present contribution we focus on the actual dynamics of unfolding as obtained from massively distributed ensemble-convergent MD simulations which provide an unprecedented scope of information on the nature of transient macromolecular structures, and with atomic-scale spatiotemporal resolution. In addition to the use of radial distribution functions of ultrafast electron diffraction (UED) simulations in gaining an insight into the elementary steps of conformational interconversions, we also investigate the structural dynamics of the protein via
the native (α-helical) hydrogen bonding contact metric which is an intuitive coarse graining approach. Importantly, the decay of α-helical motifs and the (globular) conformational annealing in Tβ_9 occur consecutively or competitively, depending on the
magnitude of temperature jump
Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source.
The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources
Perspectives on the viscoelasticity and flow behavior of entangled linear and branched polymers
We briefly review the recent advances in the rheology of entangled polymers
and identify emerging research trends and outstanding challenges, especially
with respect to branched polymers. Emphasis is placed on the role of
well-characterized model systems, as well as the synergy of
synthesis-characterization, rheometry and modeling/simulations. The theoretical
framework for understanding the observed linear and nonlinear rheological
phenomena is the tube model which is critically assessed in view of its
successes and shortcomings, whereas alternative approaches are briefly
discussed. Finally, intriguing experimental findings and controversial issues
that merit consistent explanation, such as shear banding instabilities,
multiple stress overshoots in transient simple shear and enhanced steady-state
elongational viscosity in polymer solutions, are discussed, whereas future
directions such as branch point dynamics and anisotropic monomeric friction are
outlined.Comment: 25 pages, accepted for publication in Journal of Physics Condensed
Matter (August 2015
Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting
Kinetic control of macromolecular interactions plays key roles in biological regulation. An example of such control occurs in cotranslational protein targeting by the signal recognition particle (SRP), during which the SRP RNA and the cargo both accelerate complex assembly between the SRP and SRP receptor FtsY 10^2-fold. The molecular mechanism underlying these rate accelerations was unclear. Here we show that a highly conserved basic residue, Lys399, on the lateral surface of FtsY provides a novel RNA tetraloop receptor to mediate the SRP RNA- and cargo-induced acceleration of SRP–FtsY complex assembly. We propose that the SRP RNA, by using its tetraloop to interact with FtsY–Lys399, provides a transient tether to stabilize the early stage and transition state of complex formation; this accelerates the assembly of a stable SRP–FtsY complex and allows the loading of cargo to be efficiently coupled to its membrane delivery. The use of a transient tether to increase the lifetime of collisional intermediates and reduce the dimension of diffusional search represents a novel and effective mechanism to accelerate macromolecular interactions
- …
