139 research outputs found

    Efficient algorithms for scalable video coding

    Get PDF
    A scalable video bitstream specifically designed for the needs of various client terminals, network conditions, and user demands is much desired in current and future video transmission and storage systems. The scalable extension of the H.264/AVC standard (SVC) has been developed to satisfy the new challenges posed by heterogeneous environments, as it permits a single video stream to be decoded fully or partially with variable quality, resolution, and frame rate in order to adapt to a specific application. This thesis presents novel improved algorithms for SVC, including: 1) a fast inter-frame and inter-layer coding mode selection algorithm based on motion activity; 2) a hierarchical fast mode selection algorithm; 3) a two-part Rate Distortion (RD) model targeting the properties of different prediction modes for the SVC rate control scheme; and 4) an optimised Mean Absolute Difference (MAD) prediction model. The proposed fast inter-frame and inter-layer mode selection algorithm is based on the empirical observation that a macroblock (MB) with slow movement is more likely to be best matched by one in the same resolution layer. However, for a macroblock with fast movement, motion estimation between layers is required. Simulation results show that the algorithm can reduce the encoding time by up to 40%, with negligible degradation in RD performance. The proposed hierarchical fast mode selection scheme comprises four levels and makes full use of inter-layer, temporal and spatial correlation aswell as the texture information of each macroblock. Overall, the new technique demonstrates the same coding performance in terms of picture quality and compression ratio as that of the SVC standard, yet produces a saving in encoding time of up to 84%. Compared with state-of-the-art SVC fast mode selection algorithms, the proposed algorithm achieves a superior computational time reduction under very similar RD performance conditions. The existing SVC rate distortion model cannot accurately represent the RD properties of the prediction modes, because it is influenced by the use of inter-layer prediction. A separate RD model for inter-layer prediction coding in the enhancement layer(s) is therefore introduced. Overall, the proposed algorithms improve the average PSNR by up to 0.34dB or produce an average saving in bit rate of up to 7.78%. Furthermore, the control accuracy is maintained to within 0.07% on average. As aMADprediction error always exists and cannot be avoided, an optimisedMADprediction model for the spatial enhancement layers is proposed that considers the MAD from previous temporal frames and previous spatial frames together, to achieve a more accurateMADprediction. Simulation results indicate that the proposedMADprediction model reduces the MAD prediction error by up to 79% compared with the JVT-W043 implementation

    Performance Analysis of SVC

    Full text link

    Description-driven Adaptation of Media Resources

    Get PDF
    The current multimedia landscape is characterized by a significant diversity in terms of available media formats, network technologies, and device properties. This heterogeneity has resulted in a number of new challenges, such as providing universal access to multimedia content. A solution for this diversity is the use of scalable bit streams, as well as the deployment of a complementary system that is capable of adapting scalable bit streams to the constraints imposed by a particular usage environment (e.g., the limited screen resolution of a mobile device). This dissertation investigates the use of an XML-driven (Extensible Markup Language) framework for the format-independent adaptation of scalable bit streams. Using this approach, the structure of a bit stream is first translated into an XML description. In a next step, the resulting XML description is transformed to reflect a desired adaptation of the bit stream. Finally, the transformed XML description is used to create an adapted bit stream that is suited for playback in the targeted usage environment. The main contribution of this dissertation is BFlavor, a new tool for exposing the syntax of binary media resources as an XML description. Its development was inspired by two other technologies, i.e. MPEG-21 BSDL (Bitstream Syntax Description Language) and XFlavor (Formal Language for Audio-Visual Object Representation, extended with XML features). Although created from a different point of view, both languages offer solutions for translating the syntax of a media resource into an XML representation for further processing. BFlavor (BSDL+XFlavor) harmonizes the two technologies by combining their strengths and eliminating their weaknesses. The expressive power and performance of a BFlavor-based content adaptation chain, compared to tool chains entirely based on either BSDL or XFlavor, were investigated by several experiments. One series of experiments targeted the exploitation of multi-layered temporal scalability in H.264/AVC, paying particular attention to the use of sub-sequences and hierarchical coding patterns, as well as to the use of metadata messages to communicate the bit stream structure to the adaptation logic. BFlavor was the only tool to offer an elegant and practical solution for XML-driven adaptation of H.264/AVC bit streams in the temporal domain

    Motion Scalability for Video Coding with Flexible Spatio-Temporal Decompositions

    Get PDF
    PhDThe research presented in this thesis aims to extend the scalability range of the wavelet-based video coding systems in order to achieve fully scalable coding with a wide range of available decoding points. Since the temporal redundancy regularly comprises the main portion of the global video sequence redundancy, the techniques that can be generally termed motion decorrelation techniques have a central role in the overall compression performance. For this reason the scalable motion modelling and coding are of utmost importance, and specifically, in this thesis possible solutions are identified and analysed. The main contributions of the presented research are grouped into two interrelated and complementary topics. Firstly a flexible motion model with rateoptimised estimation technique is introduced. The proposed motion model is based on tree structures and allows high adaptability needed for layered motion coding. The flexible structure for motion compensation allows for optimisation at different stages of the adaptive spatio-temporal decomposition, which is crucial for scalable coding that targets decoding on different resolutions. By utilising an adaptive choice of wavelet filterbank, the model enables high compression based on efficient mode selection. Secondly, solutions for scalable motion modelling and coding are developed. These solutions are based on precision limiting of motion vectors and creation of a layered motion structure that describes hierarchically coded motion. The solution based on precision limiting relies on layered bit-plane coding of motion vector values. The second solution builds on recently established techniques that impose scalability on a motion structure. The new approach is based on two major improvements: the evaluation of distortion in temporal Subbands and motion search in temporal subbands that finds the optimal motion vectors for layered motion structure. Exhaustive tests on the rate-distortion performance in demanding scalable video coding scenarios show benefits of application of both developed flexible motion model and various solutions for scalable motion coding

    Error resilient H.264 coded video transmission over wireless channels

    Get PDF
    The H.264/AVC recommendation was first published in 2003 and builds on the concepts of earlier standards such as MPEG-2 and MPEG-4. The H.264 recommendation represents an evolution of the existing video coding standards and was developed in response to the growing need for higher compression. Even though H.264 provides for greater compression, H.264 compressed video streams are very prone to channel errors in mobile wireless fading channels such as 3G due to high error rates experienced. Common video compression techniques include motion compensation, prediction methods, transformation, quantization and entropy coding, which are the common elements of a hybrid video codecs. The ITU-T recommendation H.264 introduces several new error resilience tools, as well as several new features such as Intra Prediction and Deblocking Filter. The channel model used for the testing was the Rayleigh Fading channel with the noise component simulated as Additive White Gaussian Noise (AWGN) using QPSK as the modulation technique. The channel was used over several Eb/N0 values to provide similar bit error rates as those found in the literature. Though further research needs to be conducted, results have shown that when using the H.264 error resilience tools in protecting encoded bitstreams to minor channel errors improvement in the decoded video quality can be observed. The tools did not perform as well with mild and severe channel errors significant as the resultant bitstream was too corrupted. From this, further research in channel coding techniques is needed to determine if the bitstream can be protected from these sorts of error rate

    Computational Complexity Optimization on H.264 Scalable/Multiview Video Coding

    Get PDF
    The H.264/MPEG-4 Advanced Video Coding (AVC) standard is a high efficiency and flexible video coding standard compared to previous standards. The high efficiency is achieved by utilizing a comprehensive full search motion estimation method. Although the H.264 standard improves the visual quality at low bitrates, it enormously increases the computational complexity. The research described in this thesis focuses on optimization of the computational complexity on H.264 scalable and multiview video coding. Nowadays, video application areas range from multimedia messaging and mobile to high definition television, and they use different type of transmission systems. The Scalable Video Coding (SVC) extension of the H.264/AVC standard is able to scale the video stream in order to adapt to a variety of devices with different capabilities. Furthermore, a rate control scheme is utilized to improve the visual quality under the constraints of capability and channel bandwidth. However, the computational complexity is increased. A simplified rate control scheme is proposed to reduce the computational complexity. In the proposed scheme, the quantisation parameter can be computed directly instead of using the exhaustive Rate-Quantization model. The linear Mean Absolute Distortion (MAD) prediction model is used to predict the scene change, and the quantisation parameter will be increased directly by a threshold when the scene changes abruptly; otherwise, the comprehensive Rate-Quantisation model will be used. Results show that the optimized rate control scheme is efficient on time saving. Multiview Video Coding (MVC) is efficient on reducing the huge amount of data in multiple-view video coding. The inter-view reference frames from the adjacent views are exploited for prediction in addition to the temporal prediction. However, due to the increase in the number of reference frames, the computational complexity is also increased. In order to manage the reference frame efficiently, a phase correlation algorithm is utilized to remove the inefficient inter-view reference frame from the reference list. The dependency between the inter-view reference frame and current frame is decided based on the phase correlation coefficients. If the inter-view reference frame is highly related to the current frame, it is still enabled in the reference list; otherwise, it will be disabled. The experimental results show that the proposed scheme is efficient on time saving and without loss in visual quality and increase in bitrate. The proposed optimization algorithms are efficient in reducing the computational complexity on H.264/AVC extension. The low computational complexity algorithm is useful in the design of future video coding standards, especially on low power handheld devices

    A parallel H.264/SVC encoder for high definition video conferencing

    Get PDF
    In this paper we present a video encoder specially developed and configured for high definition (HD) video conferencing. This video encoder brings together the following three requirements: H.264/Scalable Video Coding (SVC), parallel encoding on multicore platforms, and parallel-friendly rate control. With the first requirement, a minimum quality of service to every end-user receiver over Internet Protocol networks is guaranteed. With the second one, real-time execution is accomplished and, for this purpose, slice-level parallelism, for the main encoding loop, and block-level parallelism, for the upsampling and interpolation filtering processes, are combined. With the third one, a proper HD video content delivery under certain bit rate and end-to-end delay constraints is ensured. The experimental results prove that the proposed H.264/SVC video encoder is able to operate in real time over a wide range of target bit rates at the expense of reasonable losses in rate-distortion efficiency due to the frame partitioning into slices

    Temporal scalability comparison of the H.264/SVC and distributed video codec

    Get PDF
    • …
    corecore