11,549 research outputs found

    Interpretable Battery Lifetime Prediction Using Early Degradation Data

    Get PDF
    Battery lifetime prediction using early degradation data is crucial for optimizing the lifecycle management of batteries from cradle to grave, one example is the management of an increasing number of batteries at the end of their first lives at lower economic and technical risk.In this thesis, we first introduce quantile regression forests (QRF) model to provide both cycle life point prediction and range prediction with uncertainty quantified as the width of the prediction interval. Then two model-agnostic methods are employed to interpret the learned QRF model. Additionally, a machine learning pipeline is proposed to produce the best model among commonly-used machine learning models reported in the battery literature for battery cycle life early prediction. The experimental results illustrate that the QRF model provides the best range prediction performance using a relatively small lab dataset, thanks to its advantage of not assuming any specific distribution of cycle life. Moreover, the two most important input features are identified and their quantitative effect on predicted cycle life is investigated. Furthermore, a generalized capacity knee identification algorithm is developed to identify capacity knee and capacity knee-onset on the capacity fade curve. The proposed knee identification algorithm successfully identifies both the knee and knee-onset on synthetic degradation data as well as experimental degradation data of two chemistry types.In summary, the learned QRF model can facilitate decision-making under uncertainty by providing more information about cycle life prediction than single point prediction alone, for example, selecting a high-cycle-life fast-charging protocol. The two model-agnostic interpretation methods can be easily applied to other data-driven methods with the aim of identifying important features and revealing the battery degradation process. Lastly, the proposed capacity knee identification algorithm can contribute to a successful second-life battery market from multiple aspects

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come

    Quantitative methods for data driven reliability optimization of engineered systems

    Get PDF
    Particle accelerators, such as the Large Hadron Collider at CERN, are among the largest and most complex engineered systems to date. Future generations of particle accelerators are expected to increase in size, complexity, and cost. Among the many obstacles, this introduces unprecedented reliability challenges and requires new reliability optimization approaches. With the increasing level of digitalization of technical infrastructures, the rate and granularity of operational data collection is rapidly growing. These data contain valuable information for system reliability optimization, which can be extracted and processed with data-science methods and algorithms. However, many existing data-driven reliability optimization methods fail to exploit these data, because they make too simplistic assumptions of the system behavior, do not consider organizational contexts for cost-effectiveness, and build on specific monitoring data, which are too expensive to record. To address these limitations in realistic scenarios, a tailored methodology based on CRISP-DM (CRoss-Industry Standard Process for Data Mining) is proposed to develop data-driven reliability optimization methods. For three realistic scenarios, the developed methods use the available operational data to learn interpretable or explainable failure models that allow to derive permanent and generally applicable reliability improvements: Firstly, novel explainable deep learning methods predict future alarms accurately from few logged alarm examples and support root-cause identification. Secondly, novel parametric reliability models allow to include expert knowledge for an improved quantification of failure behavior for a fleet of systems with heterogeneous operating conditions and derive optimal operational strategies for novel usage scenarios. Thirdly, Bayesian models trained on data from a range of comparable systems predict field reliability accurately and reveal non-technical factors' influence on reliability. An evaluation of the methods applied to the three scenarios confirms that the tailored CRISP-DM methodology advances the state-of-the-art in data-driven reliability optimization to overcome many existing limitations. However, the quality of the collected operational data remains crucial for the success of such approaches. Hence, adaptations of routine data collection procedures are suggested to enhance data quality and to increase the success rate of reliability optimization projects. With the developed methods and findings, future generations of particle accelerators can be constructed and operated cost-effectively, ensuring high levels of reliability despite growing system complexity

    Data-driven prognosis of failure detection and prediction of lithium-ion batteries

    Get PDF
    Battery prognostics and health management predictive models are essential components of safety and reliability protocols in battery management system frameworks. Overall, developing a robust and efficient fault diagnostic battery model that aligns with the current literature is an essential step in ensuring the safety of battery function. For this purpose, a multi-physics, multi-scale deterministic data-driven prognosis (DDP) is proposed that only relies on in situ measurements of data and estimates the failure based on the curvature information extracted from the system. Unlike traditional applications that require explicit expression of conservation principle to represent the system's behavior, the proposed method devices a local conservation functional in the neighborhood of each data point which is represented as the minimization of curvature in the system. Pursuing such a deterministic approach, DDP eliminates the need for offline training regimen by considering only two consecutive time instances to make the prognostication that are sufficient to extract the behavioral pattern of the system. The developed framework is then employed to analyze the health of lithium ion batteries by monitoring the performance and detecting faults within the system's behavior. Based on the outcomes, the DDP exhibits promising results in detection of anomaly and prognostication of batteries' failure

    Artificial Intelligence Opportunities to Diagnose Degradation Modes for Safety Operation in Lithium Batteries

    Get PDF
    The degradation and safety study of lithium-ion batteries is becoming increasingly important given that these batteries are widely used not only in electronic devices but also in automotive vehicles. Consequently, the detection of degradation modes that could lead to safety alerts is essential. Existing methodologies are diverse, experimental based, model based, and the new trends of artificial intelligence. This review aims to analyze the existing methodologies and compare them, opening the spectrum to those based on artificial intelligence (AI). AI-based studies are increasing in number and have a wide variety of applications, but no classification, in-depth analysis, or comparison with existing methodologies is yet available

    Machine Learning in Lithium-Ion Battery:Applications, Challenges, and Future Trends

    Get PDF
    Machine Learning has garnered significant attention in lithium-ion battery research for its potential to revolutionize various aspects of the field. This paper explores the practical applications, challenges, and emerging trends of employing Machine Learning in lithium-ion battery research. Delves into specific Machine Learning techniques and their relevance, offering insights into their transformative potential. The applications of Machine Learning in lithium-ion-battery design, manufacturing, service, and end-of-life are discussed. The challenges including data availability, data preprocessing and cleaning challenges, limited sample size, computational complexity, model generalization, black-box nature of Machine Learning models, scalability of the algorithms for large datasets, data bias, and interdisciplinary nature and their mitigations are also discussed. Accordingly, by discussing the future trends, it provides valuable insights for researchers in this field. For example, a future trend is to address the challenge of small datasets by techniques such as Transfer Learning and N-shot Learning. This paper not only contributes to our understanding of Machine Learning applications but also empowers professionals in this field to harness its capabilities effectively.</p
    corecore