1,844 research outputs found

    An Innovative, Multidisciplinary Educational Program in Interactive Information Storage and Retrieval

    Get PDF
    There exists a large number of large-scale bibliographic Information Storage and Retrieval Systems containing large amounts of valuable data of interest in a wide variety of research applications. These systems are not used to capacity because the end users, i.e., the researchers, have not been trained in the techniques of accessing such systems. This thesis describes the development of a transportable, university-level course in methods of querying on-line interactive Information Storage and Retrieval systems as a solution to this problem. This course was designed to instruct upper division science and engineering students to enable these end users to directly access such systems. The course is designed to be taught by instructors who are not specialists in either computer science or research skills. It is independent of any particular IS and R system or computer hardware. The project is sponsored by NASA and conducted by the University of Southwestern Louisiana and Southern University

    Transportable educational programs for scientific and technical professionals: More effective utilization of automated scientific and technical data base systems

    Get PDF
    This grant final report executive summary documents a major, long-term program addressing innovative educational issues associated with the development, administration, evaluation, and widespread distribution of transportable educational programs for scientists and engineers to increase their knowledge of, and facilitate their utilization of automated scientific and technical information storage and retrieval systems. This educational program is of very broad scope, being targeted at Colleges of Engineering and Colleges of Physical sciences at a large number of colleges and universities throughout the United States. The educational program is designed to incorporate extensive hands-on, interactive usage of the NASA RECON system and is supported by a number of microcomputer-based software systems to facilitate the delivery and usage of the educational course materials developed as part of the program

    A Grammatical Inference Approach to Language-Based Anomaly Detection in XML

    Full text link
    False-positives are a problem in anomaly-based intrusion detection systems. To counter this issue, we discuss anomaly detection for the eXtensible Markup Language (XML) in a language-theoretic view. We argue that many XML-based attacks target the syntactic level, i.e. the tree structure or element content, and syntax validation of XML documents reduces the attack surface. XML offers so-called schemas for validation, but in real world, schemas are often unavailable, ignored or too general. In this work-in-progress paper we describe a grammatical inference approach to learn an automaton from example XML documents for detecting documents with anomalous syntax. We discuss properties and expressiveness of XML to understand limits of learnability. Our contributions are an XML Schema compatible lexical datatype system to abstract content in XML and an algorithm to learn visibly pushdown automata (VPA) directly from a set of examples. The proposed algorithm does not require the tree representation of XML, so it can process large documents or streams. The resulting deterministic VPA then allows stream validation of documents to recognize deviations in the underlying tree structure or datatypes.Comment: Paper accepted at First Int. Workshop on Emerging Cyberthreats and Countermeasures ECTCM 201

    Function Based Design-by-Analogy: A Functional Vector Approach to Analogical Search

    Get PDF
    Design-by-analogy is a powerful approach to augment traditional concept generation methods by expanding the set of generated ideas using similarity relationships from solutions to analogous problems. While the concept of design-by-analogy has been known for some time, few actual methods and tools exist to assist designers in systematically seeking and identifying analogies from general data sources, databases, or repositories, such as patent databases. A new method for extracting functional analogies from data sources has been developed to provide this capability, here based on a functional basis rather than form or conflict descriptions. Building on past research, we utilize a functional vector space model (VSM) to quantify analogous similarity of an idea's functionality. We quantitatively evaluate the functional similarity between represented design problems and, in this case, patent descriptions of products. We also develop document parsing algorithms to reduce text descriptions of the data sources down to the key functions, for use in the functional similarity analysis and functional vector space modeling. To do this, we apply Zipf's law on word count order reduction to reduce the words within the documents down to the applicable functionally critical terms, thus providing a mapping process for function based search. The reduction of a document into functional analogous words enables the matching to novel ideas that are functionally similar, which can be customized various ways. This approach thereby provides relevant sources of design-by-analogy inspiration. As a verification of the approach, two original design problem case studies illustrate the distance range of analogical solutions that can be extracted. This range extends from very near-field, literal solutions to far-field cross-domain analogies.National Science Foundation (U.S.) (Grant CMMI-0855326)National Science Foundation (U.S.) (Grant CMMI-0855510)National Science Foundation (U.S.) (Grant CMMI-0855293)SUTD-MIT International Design Centre (IDC

    NASA RECON: Course Development, Administration, and Evaluation

    Get PDF
    The R and D activities addressing the development, administration, and evaluation of a set of transportable, college-level courses to educate science and engineering students in the effective use of automated scientific and technical information storage and retrieval systems, and, in particular, in the use of the NASA RECON system, are discussed. The long-range scope and objectives of these contracted activities are overviewed and the progress which has been made toward these objectives during FY 1983-1984 is highlighted. In addition, the results of a survey of 237 colleges and universities addressing course needs are presented

    Foundations of Empirical Software Engineering: The Legacy of Victor R. Basili

    Get PDF
    This book captures the main scientific contributions of Victor R. Basili, who has significantly shaped the field of empirical software engineering from its very start. He was the first to claim that software engineering needed to follow the model of other physical sciences and develop an experimental paradigm. By working on this postulate, he developed concepts that today are well known and widely used, including the Goal-Question-Metric method, the Quality-Improvement paradigm, and the Experience Factory. He is one of the few software pioneers who can aver that their research results are not just scientifically acclaimed but are also used as industry standards. On the occasion of his 65th birthday, celebrated with a symposium in his honor at the International Conference on Software Engineering in St. Louis, MO, USA in May 2005, Barry Boehm, Hans Dieter Rombach, and Marvin V. Zelkowitz, each a long-time collaborator of Victor R. Basili, selected the 20 most important research papers of their friend, and arranged these according to subject field. They then invited renowned researchers to write topical introductions. The result is this commented collection of timeless cornerstones of software engineering, hitherto available only in scattered publications
    corecore