905,799 research outputs found
ServeNet: A Deep Neural Network for Web Services Classification
Automated service classification plays a crucial role in service discovery,
selection, and composition. Machine learning has been widely used for service
classification in recent years. However, the performance of conventional
machine learning methods highly depends on the quality of manual feature
engineering. In this paper, we present a novel deep neural network to
automatically abstract low-level representation of both service name and
service description to high-level merged features without feature engineering
and the length limitation, and then predict service classification on 50
service categories. To demonstrate the effectiveness of our approach, we
conduct a comprehensive experimental study by comparing 10 machine learning
methods on 10,000 real-world web services. The result shows that the proposed
deep neural network can achieve higher accuracy in classification and more
robust than other machine learning methods.Comment: Accepted by ICWS'2
Integrative machine learning approach for multi-class SCOP protein fold classification
Classification and prediction of protein structure has been a central research theme in structural bioinformatics. Due to the imbalanced distribution of proteins over multi SCOP classification, most discriminative machine learning suffers the well-known ‘False Positives ’ problem when learning over these types of problems. We have devised eKISS, an ensemble machine learning specifically designed to increase the coverage of positive examples when learning under multiclass imbalanced data sets. We have applied eKISS to classify 25 SCOP folds and show that our learning system improved over classical learning methods
Cue Phrase Classification Using Machine Learning
Cue phrases may be used in a discourse sense to explicitly signal discourse
structure, but also in a sentential sense to convey semantic rather than
structural information. Correctly classifying cue phrases as discourse or
sentential is critical in natural language processing systems that exploit
discourse structure, e.g., for performing tasks such as anaphora resolution and
plan recognition. This paper explores the use of machine learning for
classifying cue phrases as discourse or sentential. Two machine learning
programs (Cgrendel and C4.5) are used to induce classification models from sets
of pre-classified cue phrases and their features in text and speech. Machine
learning is shown to be an effective technique for not only automating the
generation of classification models, but also for improving upon previous
results. When compared to manually derived classification models already in the
literature, the learned models often perform with higher accuracy and contain
new linguistic insights into the data. In addition, the ability to
automatically construct classification models makes it easier to comparatively
analyze the utility of alternative feature representations of the data.
Finally, the ease of retraining makes the learning approach more scalable and
flexible than manual methods.Comment: 42 pages, uses jair.sty, theapa.bst, theapa.st
- …
