3 research outputs found

    When is a Prediction Knowledge?

    Full text link
    Within Reinforcement Learning, there is a growing collection of research which aims to express all of an agent's knowledge of the world through predictions about sensation, behaviour, and time. This work can be seen not only as a collection of architectural proposals, but also as the beginnings of a theory of machine knowledge in reinforcement learning. Recent work has expanded what can be expressed using predictions, and developed applications which use predictions to inform decision-making on a variety of synthetic and real-world problems. While promising, we here suggest that the notion of predictions as knowledge in reinforcement learning is as yet underdeveloped: some work explicitly refers to predictions as knowledge, what the requirements are for considering a prediction to be knowledge have yet to be well explored. This specification of the necessary and sufficient conditions of knowledge is important; even if claims about the nature of knowledge are left implicit in technical proposals, the underlying assumptions of such claims have consequences for the systems we design. These consequences manifest in both the way we choose to structure predictive knowledge architectures, and how we evaluate them. In this paper, we take a first step to formalizing predictive knowledge by discussing the relationship of predictive knowledge learning methods to existing theories of knowledge in epistemology. Specifically, we explore the relationships between Generalized Value Functions and epistemic notions of Justification and Truth.Comment: Accepted to RLDM 201

    What's a Good Prediction? Issues in Evaluating General Value Functions Through Error

    Full text link
    Constructing and maintaining knowledge of the world is a central problem for artificial intelligence research. Approaches to constructing an agent's knowledge using predictions have received increased amounts of interest in recent years. A particularly promising collection of research centres itself around architectures that formulate predictions as General Value Functions (GVFs), an approach commonly referred to as \textit{predictive knowledge}. A pernicious challenge for predictive knowledge architectures is determining what to predict. In this paper, we argue that evaluation methods---i.e., return error and RUPEE---are not well suited for the challenges of determining what to predict. As a primary contribution, we provide extended examples that evaluate predictions in terms of how they are used in further prediction tasks: a key motivation of predictive knowledge systems. We demonstrate that simply because a GVF's error is low, it does not necessarily follow the prediction is useful as a cumulant. We suggest evaluating 1) the relevance of a GVF's features to the prediction task at hand, and 2) evaluation of GVFs by \textit{how} they are used. To determine feature relevance, we generalize AutoStep to GTD, producing a step-size learning method suited to the life-long continual learning settings that predictive knowledge architectures are commonly deployed in. This paper contributes a first look into evaluation of predictions through their use, an integral component of predictive knowledge which is as of yet explored.Comment: Submitted to AAMA

    Communicative Capital for Prosthetic Agents

    Full text link
    This work presents an overarching perspective on the role that machine intelligence can play in enhancing human abilities, especially those that have been diminished due to injury or illness. As a primary contribution, we develop the hypothesis that assistive devices, and specifically artificial arms and hands, can and should be viewed as agents in order for us to most effectively improve their collaboration with their human users. We believe that increased agency will enable more powerful interactions between human users and next generation prosthetic devices, especially when the sensorimotor space of the prosthetic technology greatly exceeds the conventional control and communication channels available to a prosthetic user. To more concretely examine an agency-based view on prosthetic devices, we propose a new schema for interpreting the capacity of a human-machine collaboration as a function of both the human's and machine's degrees of agency. We then introduce the idea of communicative capital as a way of thinking about the communication resources developed by a human and a machine during their ongoing interaction. Using this schema of agency and capacity, we examine the benefits and disadvantages of increasing the agency of a prosthetic limb. To do so, we present an analysis of examples from the literature where building communicative capital has enabled a progression of fruitful, task-directed interactions between prostheses and their human users. We then describe further work that is needed to concretely evaluate the hypothesis that prostheses are best thought of as agents. The agent-based viewpoint developed in this article significantly extends current thinking on how best to support the natural, functional use of increasingly complex prosthetic enhancements, and opens the door for more powerful interactions between humans and their assistive technologies.Comment: 33 pages, 10 figures; unpublished technical report undergoing peer revie
    corecore