856,728 research outputs found

    Study and Observation of the Variation of Accuracies of KNN, SVM, LMNN, ENN Algorithms on Eleven Different Datasets from UCI Machine Learning Repository

    Full text link
    Machine learning qualifies computers to assimilate with data, without being solely programmed [1, 2]. Machine learning can be classified as supervised and unsupervised learning. In supervised learning, computers learn an objective that portrays an input to an output hinged on training input-output pairs [3]. Most efficient and widely used supervised learning algorithms are K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Large Margin Nearest Neighbor (LMNN), and Extended Nearest Neighbor (ENN). The main contribution of this paper is to implement these elegant learning algorithms on eleven different datasets from the UCI machine learning repository to observe the variation of accuracies for each of the algorithms on all datasets. Analyzing the accuracy of the algorithms will give us a brief idea about the relationship of the machine learning algorithms and the data dimensionality. All the algorithms are developed in Matlab. Upon such accuracy observation, the comparison can be built among KNN, SVM, LMNN, and ENN regarding their performances on each dataset.Comment: To be published in the 4th IEEE International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT 2018

    Algorithms & Fiduciaries: Existing and Proposed Regulatory Approaches to Artificially Intelligent Financial Planners

    Get PDF
    Artificial intelligence is no longer solely in the realm of science fiction. Today, basic forms of machine learning algorithms are commonly used by a variety of companies. Also, advanced forms of machine learning are increasingly making their way into the consumer sphere and promise to optimize existing markets. For financial advising, machine learning algorithms promise to make advice available 24–7 and significantly reduce costs, thereby opening the market for financial advice to lower-income individuals. However, the use of machine learning algorithms also raises concerns. Among them, whether these machine learning algorithms can meet the existing fiduciary standard imposed on human financial advisers and how responsibility and liability should be partitioned when an autonomous algorithm falls short of the fiduciary standard and harms a client. After summarizing the applicable law regulating investment advisers and the current state of robo-advising, this Note evaluates whether robo-advisers can meet the fiduciary standard and proposes alternate liability schemes for dealing with increasingly sophisticated machine learning algorithms

    Is it ethical to avoid error analysis?

    Full text link
    Machine learning algorithms tend to create more accurate models with the availability of large datasets. In some cases, highly accurate models can hide the presence of bias in the data. There are several studies published that tackle the development of discriminatory-aware machine learning algorithms. We center on the further evaluation of machine learning models by doing error analysis, to understand under what conditions the model is not working as expected. We focus on the ethical implications of avoiding error analysis, from a falsification of results and discrimination perspective. Finally, we show different ways to approach error analysis in non-interpretable machine learning algorithms such as deep learning.Comment: Presented as a poster at the 2017 Workshop on Fairness, Accountability, and Transparency in Machine Learning (FAT/ML 2017

    Automatic generation of hardware Tree Classifiers

    Full text link
    Machine Learning is growing in popularity and spreading across different fields for various applications. Due to this trend, machine learning algorithms use different hardware platforms and are being experimented to obtain high test accuracy and throughput. FPGAs are well-suited hardware platform for machine learning because of its re-programmability and lower power consumption. Programming using FPGAs for machine learning algorithms requires substantial engineering time and effort compared to software implementation. We propose a software assisted design flow to program FPGA for machine learning algorithms using our hardware library. The hardware library is highly parameterized and it accommodates Tree Classifiers. As of now, our library consists of the components required to implement decision trees and random forests. The whole automation is wrapped around using a python script which takes you from the first step of having a dataset and design choices to the last step of having a hardware descriptive code for the trained machine learning model
    corecore