265,650 research outputs found

    Identifying the machine translation error types with the greatest impact on post-editing effort

    Get PDF
    Translation Environment Tools make translators' work easier by providing them with term lists, translation memories and machine translation output. Ideally, such tools automatically predict whether it is more effortful to post-edit than to translate from scratch, and determine whether or not to provide translators with machine translation output. Current machine translation quality estimation systems heavily rely on automatic metrics, even though they do not accurately capture actual post-editing effort. In addition, these systems do not take translator experience into account, even though novices' translation processes are different from those of professional translators. In this paper, we report on the impact of machine translation errors on various types of post-editing effort indicators, for professional translators as well as student translators. We compare the impact of MT quality on a product effort indicator (HTER) with that on various process effort indicators. The translation and post-editing process of student translators and professional translators was logged with a combination of keystroke logging and eye-tracking, and the MT output was analyzed with a fine-grained translation quality assessment approach. We find that most post-editing effort indicators (product as well as process) are influenced by machine translation quality, but that different error types affect different post-editing effort indicators, confirming that a more fine-grained MT quality analysis is needed to correctly estimate actual post-editing effort. Coherence, meaning shifts, and structural issues are shown to be good indicators of post-editing effort. The additional impact of experience on these interactions between MT quality and post-editing effort is smaller than expected

    Evaluating prose style transfer with the Bible

    Get PDF
    In the prose style transfer task a system, provided with text input and a target prose style, produces output which preserves the meaning of the input text but alters the style. These systems require parallel data for evaluation of results and usually make use of parallel data for training. Currently, there are few publicly available corpora for this task. In this work, we identify a high-quality source of aligned, stylistically distinct text in different versions of the Bible. We provide a standardized split, into training, development and testing data, of the public domain versions in our corpus. This corpus is highly parallel since many Bible versions are included. Sentences are aligned due to the presence of chapter and verse numbers within all versions of the text. In addition to the corpus, we present the results, as measured by the BLEU and PINC metrics, of several models trained on our data which can serve as baselines for future research. While we present these data as a style transfer corpus, we believe that it is of unmatched quality and may be useful for other natural language tasks as well

    System combination with extra alignment information

    Get PDF
    This paper provides the system description of the IHMM team of Dublin City University for our participation in the system combination task in the Second Workshop on Applying Machine Learning Techniques to Optimise the Division of Labour in Hybrid MT (ML4HMT-12). Our work is based on a confusion network-based approach to system combination. We propose a new method to build a confusion network for this: (1) incorporate extra alignment information extracted from given meta data, treating them as sure alignments, into the results from IHMM, and (2) decode together with this information. We also heuristically set one of the system outputs as the default backbone. Our results show that this backbone, which is the RBMT system output, achieves an 0.11% improvement in BLEU over the backbone chosen by TER, while the extra information we added in the decoding part does not improve the results

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Transductive data-selection algorithms for fine-tuning neural machine translation

    Get PDF
    Machine Translation models are trained to translate a variety of documents from one language into another. However, models specifically trained for a particular characteristics of the documents tend to perform better. Fine-tuning is a technique for adapting an NMT model to some domain. In this work, we want to use this technique to adapt the model to a given test set. In particular, we are using transductive data selection algorithms which take advantage the information of the test set to retrieve sentences from a larger parallel set
    corecore