43 research outputs found

    Interpretable Machine Teaching via Feature Feedback

    Get PDF
    A student’s ability to learn a new concept can be greatly improved by providing them with clear and easy to understand explanations from a knowledgeable teacher. However, many existing approaches for machine teaching only give a limited amount of feedback to the student. For example, in the case of learning visual categories, this feedback could be the class label of the object present in the image. Instead, we propose a teaching framework that includes both instance-level labels as well as explanations in the form of feature-level feedback to the human learners. For image categorization, our feature-level feedback consists of a highlighted part or region in an image that explains the class label. We perform experiments on real human participants and show that learners that are taught with feature-level feedback perform better at test time compared to existing methods

    Near-Optimally Teaching the Crowd to Classify

    Get PDF
    How should we present training examples to learners to teach them classification rules? This is a natural problem when training workers for crowdsourcing labeling tasks, and is also motivated by challenges in data-driven online education. We propose a natural stochastic model of the learners, modeling them as randomly switching among hypotheses based on observed feedback. We then develop STRICT, an efficient algorithm for selecting examples to teach to workers. Our solution greedily maximizes a submodular surrogate objective function in order to select examples to show to the learners. We prove that our strategy is competitive with the optimal teaching policy. Moreover, for the special case of linear separators, we prove that an exponential reduction in error probability can be achieved. Our experiments on simulated workers as well as three real image annotation tasks on Amazon Mechanical Turk show the effectiveness of our teaching algorithm
    corecore