8,667 research outputs found

    Towards the Deployment of Machine Learning Solutions in Network Traffic Classification: A Systematic Survey

    Get PDF
    International audienceTraffic analysis is a compound of strategies intended to find relationships, patterns, anomalies, and misconfigurations, among others things, in Internet traffic. In particular, traffic classification is a subgroup of strategies in this field that aims at identifying the application's name or type of Internet traffic. Nowadays, traffic classification has become a challenging task due to the rise of new technologies, such as traffic encryption and encapsulation, which decrease the performance of classical traffic classification strategies. Machine Learning gains interest as a new direction in this field, showing signs of future success, such as knowledge extraction from encrypted traffic, and more accurate Quality of Service management. Machine Learning is fast becoming a key tool to build traffic classification solutions in real network traffic scenarios; in this sense, the purpose of this investigation is to explore the elements that allow this technique to work in the traffic classification field. Therefore, a systematic review is introduced based on the steps to achieve traffic classification by using Machine Learning techniques. The main aim is to understand and to identify the procedures followed by the existing works to achieve their goals. As a result, this survey paper finds a set of trends derived from the analysis performed on this domain; in this manner, the authors expect to outline future directions for Machine Learning based traffic classification

    Countering internet packet classifiers to improve user online privacy

    Get PDF
    Internet traffic classification or packet classification is the act of classifying packets using the extracted statistical data from the transmitted packets on a computer network. Internet traffic classification is an essential tool for Internet service providers to manage network traffic, provide users with the intended quality of service (QoS), and perform surveillance. QoS measures prioritize a network\u27s traffic type over other traffic based on preset criteria; for instance, it gives higher priority or bandwidth to video traffic over website browsing traffic. Internet packet classification methods are also used for automated intrusion detection. They analyze incoming traffic patterns and identify malicious packets used for denial of service (DoS) or similar attacks. Internet traffic classification may also be used for website fingerprinting attacks in which an intruder analyzes encrypted traffic of a user to find behavior or usage patterns and infer the user\u27s online activities. Protecting users\u27 online privacy against traffic classification attacks is the primary motivation of this work. This dissertation shows the effectiveness of machine learning algorithms in identifying user traffic by comparing 11 state-of-art classifiers and proposes three anonymization methods for masking generated user network traffic to counter the Internet packet classifiers. These methods are equalized packet length, equalized packet count, and equalized inter-arrival times of TCP packets. This work compares the results of these anonymization methods to show their effectiveness in reducing machine learning algorithms\u27 performance for traffic classification. The results are validated using newly generated user traffic. Additionally, a novel model based on a generative adversarial network (GAN) is introduced to automate countering the adversarial traffic classifiers. This model, which is called GAN tunnel, generates pseudo traffic patterns imitating the distributions of the real traffic generated by actual applications and encapsulates the actual network packets into the generated traffic packets. The GAN tunnel\u27s performance is tested against random forest and extreme gradient boosting (XGBoost) traffic classifiers. These classifiers are shown not being able of detecting the actual source application of data exchanged in the GAN tunnel in the tested scenarios in this thesis

    A Novel Feature Set for Application Identification

    Get PDF
    Classifying Internet traffic into applications is vital to many areas, from quality of service (QoS) provisioning, to network management and security. The task is challenging as network applications are rather dynamic in nature, tend to use a web front-end and are typically encrypted, rendering traditional port-based and deep packet inspection (DPI) method unusable. Recent classification studies proposed two alternatives: using the statistical properties of traffic or inferring the behavioural patterns of network applications, both aiming to describe the activity within and among network flows in order to understand application usage and behaviour. The aim of this paper is to propose and investigate a novel feature to define application behaviour as seen through the generated network traffic by considering the timing and pattern of user events during application sessions, leading to an extended traffic feature set based on burstiness. The selected features were further used to train and test a supervised C5.0 machine learning classifier and led to a better characterization of network applications, with a traffic classification accuracy ranging between 90- 98%

    Multitask Learning for Network Traffic Classification

    Full text link
    Traffic classification has various applications in today's Internet, from resource allocation, billing and QoS purposes in ISPs to firewall and malware detection in clients. Classical machine learning algorithms and deep learning models have been widely used to solve the traffic classification task. However, training such models requires a large amount of labeled data. Labeling data is often the most difficult and time-consuming process in building a classifier. To solve this challenge, we reformulate the traffic classification into a multi-task learning framework where bandwidth requirement and duration of a flow are predicted along with the traffic class. The motivation of this approach is twofold: First, bandwidth requirement and duration are useful in many applications, including routing, resource allocation, and QoS provisioning. Second, these two values can be obtained from each flow easily without the need for human labeling or capturing flows in a controlled and isolated environment. We show that with a large amount of easily obtainable data samples for bandwidth and duration prediction tasks, and only a few data samples for the traffic classification task, one can achieve high accuracy. We conduct two experiment with ISCX and QUIC public datasets and show the efficacy of our approach

    The Dark Side(-Channel) of Mobile Devices: A Survey on Network Traffic Analysis

    Full text link
    In recent years, mobile devices (e.g., smartphones and tablets) have met an increasing commercial success and have become a fundamental element of the everyday life for billions of people all around the world. Mobile devices are used not only for traditional communication activities (e.g., voice calls and messages) but also for more advanced tasks made possible by an enormous amount of multi-purpose applications (e.g., finance, gaming, and shopping). As a result, those devices generate a significant network traffic (a consistent part of the overall Internet traffic). For this reason, the research community has been investigating security and privacy issues that are related to the network traffic generated by mobile devices, which could be analyzed to obtain information useful for a variety of goals (ranging from device security and network optimization, to fine-grained user profiling). In this paper, we review the works that contributed to the state of the art of network traffic analysis targeting mobile devices. In particular, we present a systematic classification of the works in the literature according to three criteria: (i) the goal of the analysis; (ii) the point where the network traffic is captured; and (iii) the targeted mobile platforms. In this survey, we consider points of capturing such as Wi-Fi Access Points, software simulation, and inside real mobile devices or emulators. For the surveyed works, we review and compare analysis techniques, validation methods, and achieved results. We also discuss possible countermeasures, challenges and possible directions for future research on mobile traffic analysis and other emerging domains (e.g., Internet of Things). We believe our survey will be a reference work for researchers and practitioners in this research field.Comment: 55 page
    corecore