224,437 research outputs found

    Identifying the Context Shift between Test Benchmarks and Production Data

    Full text link
    Machine learning models are often brittle on production data despite achieving high accuracy on benchmark datasets. Benchmark datasets have traditionally served dual purposes: first, benchmarks offer a standard on which machine learning researchers can compare different methods, and second, benchmarks provide a model, albeit imperfect, of the real world. The incompleteness of test benchmarks (and the data upon which models are trained) hinder robustness in machine learning, enable shortcut learning, and leave models systematically prone to err on out-of-distribution and adversarially perturbed data. The mismatch between a single static benchmark dataset and a production dataset has traditionally been described as a dataset shift. In an effort to clarify how to address the mismatch between test benchmarks and production data, we introduce context shift to describe semantically meaningful changes in the underlying data generation process. Moreover, we identify three methods for addressing context shift that would otherwise lead to model prediction errors: first, we describe how human intuition and expert knowledge can identify semantically meaningful features upon which models systematically fail, second, we detail how dynamic benchmarking - with its focus on capturing the data generation process - can promote generalizability through corroboration, and third, we highlight that clarifying a model's limitations can reduce unexpected errors. Robust machine learning is focused on model performance beyond benchmarks, and as such, we consider three model organism domains - facial expression recognition, deepfake detection, and medical diagnosis - to highlight how implicit assumptions in benchmark tasks lead to errors in practice. By paying close attention to the role of context, researchers can design more comprehensive benchmarks, reduce context shift errors, and increase generalizability

    Dual Learning for Machine Translation

    Get PDF
    Abstract While neural machine translation (NMT) is making good progress in the past two years, tens of millions of bilingual sentence pairs are needed for its training. However, human labeling is very costly. To tackle this training data bottleneck, we develop a dual-learning mechanism, which can enable an NMT system to automatically learn from unlabeled data through a dual-learning game. This mechanism is inspired by the following observation: any machine translation task has a dual task, e.g., English-to-French translation (primal) versus French-to-English translation (dual); the primal and dual tasks can form a closed loop, and generate informative feedback signals to train the translation models, even if without the involvement of a human labeler. In the dual-learning mechanism, we use one agent to represent the model for the primal task and the other agent to represent the model for the dual task, then ask them to teach each other through a reinforcement learning process. Based on the feedback signals generated during this process (e.g., the languagemodel likelihood of the output of a model, and the reconstruction error of the original sentence after the primal and dual translations), we can iteratively update the two models until convergence (e.g., using the policy gradient methods). We call the corresponding approach to neural machine translation dual-NMT. Experiments show that dual-NMT works very well on English↔French translation; especially, by learning from monolingual data (with 10% bilingual data for warm start), it achieves a comparable accuracy to NMT trained from the full bilingual data for the French-to-English translation task

    Embedded federated learning over a LoRa mesh network

    Get PDF
    In on-device training of machine learning models on microcontrollers a neural network is trained on the device. A specific approach for collaborative on-device training is federated learning. In this paper, we propose embedded federated learning on microcontroller boards using the communication capacity of a LoRa mesh network. We apply a dual board design: The machine learning application that contains a neural network is trained for a keyword spotting task on the Arduino Portenta H7. For the networking of the federated learning process, the Portenta is connected to a TTGO LORA32 board that operates as a router within a LoRa mesh network. We experiment the federated learning application on the LoRa mesh network and analyze the network, system, and application level performance. The results from our experimentation suggest the feasibility of the proposed system and exemplify an implementation of a distributed application with re-trainable compute nodes, interconnected over LoRa, entirely deployed at the tiny edge.This work was supported by the Spanish Government under contracts PID2019-106774RB-C21, PCI2019-111851-2 (LeadingEdge CHIST-ERA), PCI2019-111850-2 (DiPET CHIST-ERA).Peer ReviewedPostprint (published version

    Neural mechanisms linked to treatment outcomes and recovery in substance-related and addictive disorders

    Get PDF
    The present review focuses on potential neural mechanisms underlying recovery from psychiatric conditions characterised by impaired impulse control, specifically substance use disorders, gambling disorder, and internet gaming disorder. Existing treatments (both pharmacological and psychological) for these addictions may impact brain processes, and these have been evaluated in neuroimaging studies. Medication challenge and short-term intervention administration will be considered with respect to treatment utility. Main models of addiction (e.g., dual process, reward deficiency syndrome) will be considered in the context of extant data. Additionally, advanced analytic approaches (e.g., machine-learning approaches) will be considered with respect to guiding treatment development efforts. Thus, this narrative review aims to provide directions for treatment development for addictive disorders

    Data Collection and Machine Learning Methods for Automated Pedestrian Facility Detection and Mensuration

    Get PDF
    Large-scale collection of pedestrian facility (crosswalks, sidewalks, etc.) presence data is vital to the success of efforts to improve pedestrian facility management, safety analysis, and road network planning. However, this kind of data is typically not available on a large scale due to the high labor and time costs that are the result of relying on manual data collection methods. Therefore, methods for automating this process using techniques such as machine learning are currently being explored by researchers. In our work, we mainly focus on machine learning methods for the detection of crosswalks and sidewalks from both aerial and street-view imagery. We test data from these two viewpoints individually and with an ensemble method that we refer to as our “dual-perspective prediction model”. In order to obtain this data, we developed a data collection pipeline that combines crowdsourced pedestrian facility location data with aerial and street-view imagery from Bing Maps. In addition to the Convolutional Neural Network used to perform pedestrian facility detection using this data, we also trained a segmentation network to measure the length and width of crosswalks from aerial images. In our tests with a dual-perspective image dataset that was heavily occluded in the aerial view but relatively clear in the street view, our dual-perspective prediction model was able to increase prediction accuracy, recall, and precision by 49%, 383%, and 15%, respectively (compared to using a single perspective model based on only aerial view images). In our tests with satellite imagery provided by the Mississippi Department of Transportation, we were able to achieve accuracies as high as 99.23%, 91.26%, and 93.7% for aerial crosswalk detection, aerial sidewalk detection, and aerial crosswalk mensuration, respectively. The final system that we developed packages all of our machine learning models into an easy-to-use system that enables users to process large batches of imagery or examine individual images in a directory using a graphical interface. Our data collection and filtering guidelines can also be used to guide future research in this area by establishing standards for data quality and labelling
    • …
    corecore