8,745 research outputs found

    Machine Learning the Cryptocurrency Market

    Get PDF
    Machine learning and AI-assisted trading have attracted growing interest for the past few years. Here, we use this approach to test the hypothesis that the inefficiency of the cryptocurrency market can be exploited to generate abnormal profits. We analyse daily data for 1,6811,681 cryptocurrencies for the period between Nov. 2015 and Apr. 2018. We show that simple trading strategies assisted by state-of-the-art machine learning algorithms outperform standard benchmarks. Our results show that non-trivial, but ultimately simple, algorithmic mechanisms can help anticipate the short-term evolution of the cryptocurrency market

    Cryptocurrency with a Conscience: Using Artificial Intelligence to Develop Money that Advances Human Ethical Values

    Get PDF
    Cryptocurrencies like Bitcoin are offering new avenues for economic empowerment to individuals around the world. However, they also provide a powerful tool that facilitates criminal activities such as human trafficking and illegal weapons sales that cause great harm to individuals and communities. Cryptocurrency advocates have argued that the ethical dimensions of cryptocurrency are not qualitatively new, insofar as money has always been understood as a passive instrument that lacks ethical values and can be used for good or ill purposes. In this paper, we challenge such a presumption that money must be ‘value-neutral.’ Building on advances in artificial intelligence, cryptography, and machine ethics, we argue that it is possible to design artificially intelligent cryptocurrencies that are not ethically neutral but which autonomously regulate their own use in a way that reflects the ethical values of particular human beings – or even entire human societies. We propose a technological framework for such cryptocurrencies and then analyse the legal, ethical, and economic implications of their use. Finally, we suggest that the development of cryptocurrencies possessing ethical as well as monetary value can provide human beings with a new economic means of positively influencing the ethos and values of their societies

    Coin.AI: A Proof-of-Useful-Work Scheme for Blockchain-based Distributed Deep Learning

    Get PDF
    One decade ago, Bitcoin was introduced, becoming the first cryptocurrency and establishing the concept of "blockchain" as a distributed ledger. As of today, there are many different implementations of cryptocurrencies working over a blockchain, with different approaches and philosophies. However, many of them share one common feature: they require proof-of-work to support the generation of blocks (mining) and, eventually, the generation of money. This proof-of-work scheme often consists in the resolution of a cryptography problem, most commonly breaking a hash value, which can only be achieved through brute-force. The main drawback of proof-of-work is that it requires ridiculously large amounts of energy which do not have any useful outcome beyond supporting the currency. In this paper, we present a theoretical proposal that introduces a proof-of-useful-work scheme to support a cryptocurrency running over a blockchain, which we named Coin.AI. In this system, the mining scheme requires training deep learning models, and a block is only mined when the performance of such model exceeds a threshold. The distributed system allows for nodes to verify the models delivered by miners in an easy way (certainly much more efficiently than the mining process itself), determining when a block is to be generated. Additionally, this paper presents a proof-of-storage scheme for rewarding users that provide storage for the deep learning models, as well as a theoretical dissertation on how the mechanics of the system could be articulated with the ultimate goal of democratizing access to artificial intelligence.Comment: 17 pages, 5 figure

    Mutual-Excitation of Cryptocurrency Market Returns and Social Media Topics

    Get PDF
    Cryptocurrencies have recently experienced a new wave of price volatility and interest; activity within social media communities relating to cryptocurrencies has increased significantly. There is currently limited documented knowledge of factors which could indicate future price movements. This paper aims to decipher relationships between cryptocurrency price changes and topic discussion on social media to provide, among other things, an understanding of which topics are indicative of future price movements. To achieve this a well-known dynamic topic modelling approach is applied to social media communication to retrieve information about the temporal occurrence of various topics. A Hawkes model is then applied to find interactions between topics and cryptocurrency prices. The results show particular topics tend to precede certain types of price movements, for example the discussion of 'risk and investment vs trading' being indicative of price falls, the discussion of 'substantial price movements' being indicative of volatility, and the discussion of 'fundamental cryptocurrency value' by technical communities being indicative of price rises. The knowledge of topic relationships gained here could be built into a real-time system, providing trading or alerting signals.Comment: 3rd International Conference on Knowledge Engineering and Applications (ICKEA 2018) - Moscow, Russia (June 25-27 2018
    corecore