8,745 research outputs found
Machine Learning the Cryptocurrency Market
Machine learning and AI-assisted trading have attracted growing interest for the past few years. Here, we use this approach to test the hypothesis that the inefficiency of the cryptocurrency market can be exploited to generate abnormal profits. We analyse daily data for  cryptocurrencies for the period between Nov. 2015 and Apr. 2018. We show that simple trading strategies assisted by state-of-the-art machine learning algorithms outperform standard benchmarks. Our results show that non-trivial, but ultimately simple, algorithmic mechanisms can help anticipate the short-term evolution of the cryptocurrency market
Cryptocurrency with a Conscience: Using Artificial Intelligence to Develop Money that Advances Human Ethical Values
Cryptocurrencies like Bitcoin are offering new avenues for economic empowerment
to individuals around the world. However, they also provide a powerful tool that
facilitates criminal activities such as human trafficking and illegal weapons sales
that cause great harm to individuals and communities. Cryptocurrency advocates
have argued that the ethical dimensions of cryptocurrency are not qualitatively new,
insofar as money has always been understood as a passive instrument that lacks
ethical values and can be used for good or ill purposes. In this paper, we challenge
such a presumption that money must be ‘value-neutral.’ Building on advances in
artificial intelligence, cryptography, and machine ethics, we argue that it is possible
to design artificially intelligent cryptocurrencies that are not ethically neutral but
which autonomously regulate their own use in a way that reflects the ethical values
of particular human beings – or even entire human societies. We propose a technological framework for such cryptocurrencies and then analyse the legal, ethical, and
economic implications of their use. Finally, we suggest that the development of
cryptocurrencies possessing ethical as well as monetary value can provide human
beings with a new economic means of positively influencing the ethos and values
of their societies
Coin.AI: A Proof-of-Useful-Work Scheme for Blockchain-based Distributed Deep Learning
One decade ago, Bitcoin was introduced, becoming the first cryptocurrency and
establishing the concept of "blockchain" as a distributed ledger. As of today,
there are many different implementations of cryptocurrencies working over a
blockchain, with different approaches and philosophies. However, many of them
share one common feature: they require proof-of-work to support the generation
of blocks (mining) and, eventually, the generation of money. This proof-of-work
scheme often consists in the resolution of a cryptography problem, most
commonly breaking a hash value, which can only be achieved through brute-force.
The main drawback of proof-of-work is that it requires ridiculously large
amounts of energy which do not have any useful outcome beyond supporting the
currency. In this paper, we present a theoretical proposal that introduces a
proof-of-useful-work scheme to support a cryptocurrency running over a
blockchain, which we named Coin.AI. In this system, the mining scheme requires
training deep learning models, and a block is only mined when the performance
of such model exceeds a threshold. The distributed system allows for nodes to
verify the models delivered by miners in an easy way (certainly much more
efficiently than the mining process itself), determining when a block is to be
generated. Additionally, this paper presents a proof-of-storage scheme for
rewarding users that provide storage for the deep learning models, as well as a
theoretical dissertation on how the mechanics of the system could be
articulated with the ultimate goal of democratizing access to artificial
intelligence.Comment: 17 pages, 5 figure
Mutual-Excitation of Cryptocurrency Market Returns and Social Media Topics
Cryptocurrencies have recently experienced a new wave of price volatility and
interest; activity within social media communities relating to cryptocurrencies
has increased significantly. There is currently limited documented knowledge of
factors which could indicate future price movements. This paper aims to
decipher relationships between cryptocurrency price changes and topic
discussion on social media to provide, among other things, an understanding of
which topics are indicative of future price movements. To achieve this a
well-known dynamic topic modelling approach is applied to social media
communication to retrieve information about the temporal occurrence of various
topics. A Hawkes model is then applied to find interactions between topics and
cryptocurrency prices. The results show particular topics tend to precede
certain types of price movements, for example the discussion of 'risk and
investment vs trading' being indicative of price falls, the discussion of
'substantial price movements' being indicative of volatility, and the
discussion of 'fundamental cryptocurrency value' by technical communities being
indicative of price rises. The knowledge of topic relationships gained here
could be built into a real-time system, providing trading or alerting signals.Comment: 3rd International Conference on Knowledge Engineering and
  Applications (ICKEA 2018) - Moscow, Russia (June 25-27 2018
- …
