505,872 research outputs found

    Culture and E-Learning: Automatic Detection of a Users’ Culture from Survey Data

    Get PDF
    Knowledge about the culture of a user is especially important for the design of e-learning applications. In the experiment reported here, questionnaire data was used to build machine learning models to automatically predict the culture of a user. This work can be applied to automatic culture detection and subsequently to the adaptation of user interfaces in e-learning

    A Shared Task on Bandit Learning for Machine Translation

    Full text link
    We introduce and describe the results of a novel shared task on bandit learning for machine translation. The task was organized jointly by Amazon and Heidelberg University for the first time at the Second Conference on Machine Translation (WMT 2017). The goal of the task is to encourage research on learning machine translation from weak user feedback instead of human references or post-edits. On each of a sequence of rounds, a machine translation system is required to propose a translation for an input, and receives a real-valued estimate of the quality of the proposed translation for learning. This paper describes the shared task's learning and evaluation setup, using services hosted on Amazon Web Services (AWS), the data and evaluation metrics, and the results of various machine translation architectures and learning protocols.Comment: Conference on Machine Translation (WMT) 201

    Interactive Machine Learning for End-User

    Full text link
    User interaction with intelligent systems need not be limited to interaction where pre-trained software has intelligence “baked in.” End-user training, including interactive machine learning (IML) approaches, can enable users to create and customise systems themselves. We propose that the user experience of these users is worth considering. Furthermore, the user experience of system developers—people who may train and configure both learning algorithms and their user interfaces—also deserves attention. We additionally propose that IML can improve user experiences by supporting usercentred design processes, and that there is a further role for user-centred design in improving interactive and classical machine learning systems. We are developing this approach and embodying it through the design of a new User Innovation Toolkit, in the context of the European Commission-funded project RAPID-MIX

    Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science

    Full text link
    As the field of data science continues to grow, there will be an ever-increasing demand for tools that make machine learning accessible to non-experts. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning---pipeline design. We implement an open source Tree-based Pipeline Optimization Tool (TPOT) in Python and demonstrate its effectiveness on a series of simulated and real-world benchmark data sets. In particular, we show that TPOT can design machine learning pipelines that provide a significant improvement over a basic machine learning analysis while requiring little to no input nor prior knowledge from the user. We also address the tendency for TPOT to design overly complex pipelines by integrating Pareto optimization, which produces compact pipelines without sacrificing classification accuracy. As such, this work represents an important step toward fully automating machine learning pipeline design.Comment: 8 pages, 5 figures, preprint to appear in GECCO 2016, edits not yet made from reviewer comment
    • …
    corecore