27,107 research outputs found

    Machine learning supported next-maintenance prediction for industrial vehicles

    Get PDF
    Industrial and construction vehicles require tight periodic maintenance operations. Their schedule depends on vehicle characteristics and usage. The latter can be accurately monitored through various on-board devices, enabling the application of Machine Learning techniques to analyze vehicle usage patterns and design predictive analytics. This paper presents a data-driven application to automatically schedule the periodic maintenance operations of industrial vehicles. It aims to predict, for each vehicle and date, the actual remaining days until the next maintenance is due. Our Machine Learning solution is designed to address the following challenges: (i) the non-stationarity of the per-vehicle utilization time series, which limits the effectiveness of classic scheduling policies, and (ii) the potential lack of historical data for those vehicles that have recently been added to the fleet, which hinders the learning of accurate predictors from past data. Preliminary results collected in a real industrial scenario demonstrate the effectiveness of the proposed solution on heterogeneous vehicles. The system we propose here is currently under deployment, enabling further tests and tunings

    Preventive maintenance for heterogeneous industrial vehicles with incomplete usage data

    Get PDF
    Large fleets of industrial and construction vehicles require periodic maintenance activities. Scheduling these operations is potentially challenging because the optimal timeline depends on the vehicle characteristics and usage. This paper studies a real industrial case study, where a company providing telematics services supports fleet managers in scheduling maintenance operations of about 2000 construction vehicles of various types. The heterogeneity of the fleet and the availability of historical data fosters the use of data-driven solutions based on machine learning techniques. The paper addresses the learning of per-vehicle predictors aimed at forecasting the next-day utilisation level and the remaining time until the next maintenance. We explore the performance of both linear and non-liner models, showing that machine learning models are able to capture the underlying trends describing non-stationary vehicle usage patterns. We also explicitly consider the lack of data for vehicles that have been recently added to the fleet. Results show that the availability of even a limited portion of past utilisation levels enables the identification of vehicles with similar usage trends and the opportunistic reuse of their historical data

    Input Prioritization for Testing Neural Networks

    Full text link
    Deep neural networks (DNNs) are increasingly being adopted for sensing and control functions in a variety of safety and mission-critical systems such as self-driving cars, autonomous air vehicles, medical diagnostics, and industrial robotics. Failures of such systems can lead to loss of life or property, which necessitates stringent verification and validation for providing high assurance. Though formal verification approaches are being investigated, testing remains the primary technique for assessing the dependability of such systems. Due to the nature of the tasks handled by DNNs, the cost of obtaining test oracle data---the expected output, a.k.a. label, for a given input---is high, which significantly impacts the amount and quality of testing that can be performed. Thus, prioritizing input data for testing DNNs in meaningful ways to reduce the cost of labeling can go a long way in increasing testing efficacy. This paper proposes using gauges of the DNN's sentiment derived from the computation performed by the model, as a means to identify inputs that are likely to reveal weaknesses. We empirically assessed the efficacy of three such sentiment measures for prioritization---confidence, uncertainty, and surprise---and compare their effectiveness in terms of their fault-revealing capability and retraining effectiveness. The results indicate that sentiment measures can effectively flag inputs that expose unacceptable DNN behavior. For MNIST models, the average percentage of inputs correctly flagged ranged from 88% to 94.8%

    Reliability analysis for automobile engines: conditional inference trees

    Get PDF
    The reliability model with covariates for machinery parts has been extensively studied by the proportional hazards model (PHM) and its variants. However, it is not straightforward to provide business recommendations based on the results of the PHM. We use a novel method, namely the Conditional Inference Tree, to conduct the reliability analysis for the automobile engines data, provided by a UK fleet company. We find that the reliability of automobile engines is significantly related to the vehicle age, early failure, and repair history. Our tree-structured model can be easily interpreted, and tangible business recommendations are provided for the fleet management and maintenance

    Learning from accidents : machine learning for safety at railway stations

    Get PDF
    In railway systems, station safety is a critical aspect of the overall structure, and yet, accidents at stations still occur. It is time to learn from these errors and improve conventional methods by utilizing the latest technology, such as machine learning (ML), to analyse accidents and enhance safety systems. ML has been employed in many fields, including engineering systems, and it interacts with us throughout our daily lives. Thus, we must consider the available technology in general and ML in particular in the context of safety in the railway industry. This paper explores the employment of the decision tree (DT) method in safety classification and the analysis of accidents at railway stations to predict the traits of passengers affected by accidents. The critical contribution of this study is the presentation of ML and an explanation of how this technique is applied for ensuring safety, utilizing automated processes, and gaining benefits from this powerful technology. To apply and explore this method, a case study has been selected that focuses on the fatalities caused by accidents at railway stations. An analysis of some of these fatal accidents as reported by the Rail Safety and Standards Board (RSSB) is performed and presented in this paper to provide a broader summary of the application of supervised ML for improving safety at railway stations. Finally, this research shows the vast potential of the innovative application of ML in safety analysis for the railway industry
    • …
    corecore