424,112 research outputs found
Machine Learning at Microsoft with ML .NET
Machine Learning is transitioning from an art and science into a technology
available to every developer. In the near future, every application on every
platform will incorporate trained models to encode data-based decisions that
would be impossible for developers to author. This presents a significant
engineering challenge, since currently data science and modeling are largely
decoupled from standard software development processes. This separation makes
incorporating machine learning capabilities inside applications unnecessarily
costly and difficult, and furthermore discourage developers from embracing ML
in first place. In this paper we present ML .NET, a framework developed at
Microsoft over the last decade in response to the challenge of making it easy
to ship machine learning models in large software applications. We present its
architecture, and illuminate the application demands that shaped it.
Specifically, we introduce DataView, the core data abstraction of ML .NET which
allows it to capture full predictive pipelines efficiently and consistently
across training and inference lifecycles. We close the paper with a
surprisingly favorable performance study of ML .NET compared to more recent
entrants, and a discussion of some lessons learned
Java-ML: a machine learning library
Java-ML is a collection of machine learning and data mining algorithms, which aims to be a readily usable and easily extensible API for both software developers and research scientists. The interfaces for each type of algorithm are kept simple and algorithms strictly follow their respective interface. Comparing different classifiers or clustering algorithms is therefore straightforward, and implementing new algorithms is also easy. The implementations of the algorithms are clearly written, properly documented and can thus be used as a reference. The library is written in Java and is available from http://java-ml.sourceforge.net/ under the GNU GPL license
Machine learning-guided directed evolution for protein engineering
Machine learning (ML)-guided directed evolution is a new paradigm for
biological design that enables optimization of complex functions. ML methods
use data to predict how sequence maps to function without requiring a detailed
model of the underlying physics or biological pathways. To demonstrate
ML-guided directed evolution, we introduce the steps required to build ML
sequence-function models and use them to guide engineering, making
recommendations at each stage. This review covers basic concepts relevant to
using ML for protein engineering as well as the current literature and
applications of this new engineering paradigm. ML methods accelerate directed
evolution by learning from information contained in all measured variants and
using that information to select sequences that are likely to be improved. We
then provide two case studies that demonstrate the ML-guided directed evolution
process. We also look to future opportunities where ML will enable discovery of
new protein functions and uncover the relationship between protein sequence and
function.Comment: Made significant revisions to focus on aspects most relevant to
applying machine learning to speed up directed evolutio
Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks
Future wireless networks have a substantial potential in terms of supporting
a broad range of complex compelling applications both in military and civilian
fields, where the users are able to enjoy high-rate, low-latency, low-cost and
reliable information services. Achieving this ambitious goal requires new radio
techniques for adaptive learning and intelligent decision making because of the
complex heterogeneous nature of the network structures and wireless services.
Machine learning (ML) algorithms have great success in supporting big data
analytics, efficient parameter estimation and interactive decision making.
Hence, in this article, we review the thirty-year history of ML by elaborating
on supervised learning, unsupervised learning, reinforcement learning and deep
learning. Furthermore, we investigate their employment in the compelling
applications of wireless networks, including heterogeneous networks (HetNets),
cognitive radios (CR), Internet of things (IoT), machine to machine networks
(M2M), and so on. This article aims for assisting the readers in clarifying the
motivation and methodology of the various ML algorithms, so as to invoke them
for hitherto unexplored services as well as scenarios of future wireless
networks.Comment: 46 pages, 22 fig
- …
