293 research outputs found

    Improving location prediction services for new users with probabilistic latent semantic analysis

    No full text
    Location prediction systems that attempt to determine the mobility patterns of individuals in their daily lives have become increasingly common in recent years. Approaches to this prediction task include eigenvalue decomposition [5], non-linear time series analysis of arrival times [10], and variable order Markov models [1]. However, these approachesall assume sufficient sets of training data. For new users, by definition, this data is typically not available, leading to poor predictive performance. Given that mobility is a highly personal behaviour, this represents a significant barrier to entry. Against this background, we present a novel framework to enhance prediction using information about the mobility habits of existing users. At the core of the framework is a hierarchical Bayesian model, a type of probabilistic semantic analysis [7], representing the intuition that the temporal features of the new user’s location habits are likely to be similar to those of an existing user in the system. We evaluate this framework on the real life location habits of 38 users in the Nokia Lausanne dataset, showing that accuracy is improved by 16%, relative to the state of the art, when predicting the next location of new users

    Distributed Reconstruction of Nonlinear Networks: An ADMM Approach

    Full text link
    In this paper, we present a distributed algorithm for the reconstruction of large-scale nonlinear networks. In particular, we focus on the identification from time-series data of the nonlinear functional forms and associated parameters of large-scale nonlinear networks. Recently, a nonlinear network reconstruction problem was formulated as a nonconvex optimisation problem based on the combination of a marginal likelihood maximisation procedure with sparsity inducing priors. Using a convex-concave procedure (CCCP), an iterative reweighted lasso algorithm was derived to solve the initial nonconvex optimisation problem. By exploiting the structure of the objective function of this reweighted lasso algorithm, a distributed algorithm can be designed. To this end, we apply the alternating direction method of multipliers (ADMM) to decompose the original problem into several subproblems. To illustrate the effectiveness of the proposed methods, we use our approach to identify a network of interconnected Kuramoto oscillators with different network sizes (500~100,000 nodes).Comment: To appear in the Preprints of 19th IFAC World Congress 201
    corecore