319 research outputs found

    Hypergraph Learning with Line Expansion

    Full text link
    Previous hypergraph expansions are solely carried out on either vertex level or hyperedge level, thereby missing the symmetric nature of data co-occurrence, and resulting in information loss. To address the problem, this paper treats vertices and hyperedges equally and proposes a new hypergraph formulation named the \emph{line expansion (LE)} for hypergraphs learning. The new expansion bijectively induces a homogeneous structure from the hypergraph by treating vertex-hyperedge pairs as "line nodes". By reducing the hypergraph to a simple graph, the proposed \emph{line expansion} makes existing graph learning algorithms compatible with the higher-order structure and has been proven as a unifying framework for various hypergraph expansions. We evaluate the proposed line expansion on five hypergraph datasets, the results show that our method beats SOTA baselines by a significant margin

    Aligning Robot and Human Representations

    Full text link
    To act in the world, robots rely on a representation of salient task aspects: for example, to carry a coffee mug, a robot may consider movement efficiency or mug orientation in its behavior. However, if we want robots to act for and with people, their representations must not be just functional but also reflective of what humans care about, i.e. they must be aligned. We observe that current learning approaches suffer from representation misalignment, where the robot's learned representation does not capture the human's representation. We suggest that because humans are the ultimate evaluator of robot performance, we must explicitly focus our efforts on aligning learned representations with humans, in addition to learning the downstream task. We advocate that current representation learning approaches in robotics should be studied from the perspective of how well they accomplish the objective of representation alignment. We mathematically define the problem, identify its key desiderata, and situate current methods within this formalism. We conclude by suggesting future directions for exploring open challenges.Comment: 14 pages, 3 figures, 1 tabl
    • …
    corecore