25 research outputs found

    Classification Uncertainty of Deep Neural Networks Based on Gradient Information

    Full text link
    We study the quantification of uncertainty of Convolutional Neural Networks (CNNs) based on gradient metrics. Unlike the classical softmax entropy, such metrics gather information from all layers of the CNN. We show for the EMNIST digits data set that for several such metrics we achieve the same meta classification accuracy -- i.e. the task of classifying predictions as correct or incorrect without knowing the actual label -- as for entropy thresholding. We apply meta classification to unknown concepts (out-of-distribution samples) -- EMNIST/Omniglot letters, CIFAR10 and noise -- and demonstrate that meta classification rates for unknown concepts can be increased when using entropy together with several gradient based metrics as input quantities for a meta classifier. Meta classifiers only trained on the uncertainty metrics of known concepts, i.e. EMNIST digits, usually do not perform equally well for all unknown concepts. If we however allow the meta classifier to be trained on uncertainty metrics for some out-of-distribution samples, meta classification for concepts remote from EMNIST digits (then termed known unknowns) can be improved considerably

    Towards a Simple Approach to Multi-step Model-based Reinforcement Learning

    Full text link
    When environmental interaction is expensive, model-based reinforcement learning offers a solution by planning ahead and avoiding costly mistakes. Model-based agents typically learn a single-step transition model. In this paper, we propose a multi-step model that predicts the outcome of an action sequence with variable length. We show that this model is easy to learn, and that the model can make policy-conditional predictions. We report preliminary results that show a clear advantage for the multi-step model compared to its one-step counterpart

    Uncertainty Measures and Prediction Quality Rating for the Semantic Segmentation of Nested Multi Resolution Street Scene Images

    Full text link
    In the semantic segmentation of street scenes the reliability of the prediction and therefore uncertainty measures are of highest interest. We present a method that generates for each input image a hierarchy of nested crops around the image center and presents these, all re-scaled to the same size, to a neural network for semantic segmentation. The resulting softmax outputs are then post processed such that we can investigate mean and variance over all image crops as well as mean and variance of uncertainty heat maps obtained from pixel-wise uncertainty measures, like the entropy, applied to each crop's softmax output. In our tests, we use the publicly available DeepLabv3+ MobilenetV2 network (trained on the Cityscapes dataset) and demonstrate that the incorporation of crops improves the quality of the prediction and that we obtain more reliable uncertainty measures. These are then aggregated over predicted segments for either classifying between IoU=0 and IoU>0 (meta classification) or predicting the IoU via linear regression (meta regression). The latter yields reliable performance estimates for segmentation networks, in particular useful in the absence of ground truth. For the task of meta classification we obtain a classification accuracy of 81.93%81.93\% and an AUROC of 89.89%89.89\%. For meta regression we obtain an R2R^2 value of 84.77%84.77\%. These results yield significant improvements compared to other approaches

    Prediction Error Meta Classification in Semantic Segmentation: Detection via Aggregated Dispersion Measures of Softmax Probabilities

    Full text link
    We present a method that "meta" classifies whether seg-ments predicted by a semantic segmentation neural networkintersect with the ground truth. For this purpose, we employ measures of dispersion for predicted pixel-wise class probability distributions, like classification entropy, that yield heat maps of the input scene's size. We aggregate these dispersion measures segment-wise and derive metrics that are well-correlated with the segment-wise IoU of prediction and ground truth. This procedure yields an almost plug and play post-processing tool to rate the prediction quality of semantic segmentation networks on segment level. This is especially relevant for monitoring neural networks in online applications like automated driving or medical imaging where reliability is of utmost importance. In our tests, we use publicly available state-of-the-art networks trained on the Cityscapes dataset and the BraTS2017 dataset and analyze the predictive power of different metrics as well as different sets of metrics. To this end, we compute logistic LASSO regression fits for the task of classifying IoU=0 vs. IoU>0 per segment and obtain AUROC values of up to 91.55%. We complement these tests with linear regression fits to predict the segment-wise IoU and obtain prediction standard deviations of down to 0.130 as well as R2R^2 values of up to 84.15%. We show that these results clearly outperform standard approaches

    The NiuTrans End-to-End Speech Translation System for IWSLT 2021 Offline Task

    Full text link
    This paper describes the submission of the NiuTrans end-to-end speech translation system for the IWSLT 2021 offline task, which translates from the English audio to German text directly without intermediate transcription. We use the Transformer-based model architecture and enhance it by Conformer, relative position encoding, and stacked acoustic and textual encoding. To augment the training data, the English transcriptions are translated to German translations. Finally, we employ ensemble decoding to integrate the predictions from several models trained with the different datasets. Combining these techniques, we achieve 33.84 BLEU points on the MuST-C En-De test set, which shows the enormous potential of the end-to-end model.Comment: IWSLT 202

    Non-Markovian Control with Gated End-to-End Memory Policy Networks

    Full text link
    Partially observable environments present an important open challenge in the domain of sequential control learning with delayed rewards. Despite numerous attempts during the two last decades, the majority of reinforcement learning algorithms and associated approximate models, applied to this context, still assume Markovian state transitions. In this paper, we explore the use of a recently proposed attention-based model, the Gated End-to-End Memory Network, for sequential control. We call the resulting model the Gated End-to-End Memory Policy Network. More precisely, we use a model-free value-based algorithm to learn policies for partially observed domains using this memory-enhanced neural network. This model is end-to-end learnable and it features unbounded memory. Indeed, because of its attention mechanism and associated non-parametric memory, the proposed model allows us to define an attention mechanism over the observation stream unlike recurrent models. We show encouraging results that illustrate the capability of our attention-based model in the context of the continuous-state non-stationary control problem of stock trading. We also present an OpenAI Gym environment for simulated stock exchange and explain its relevance as a benchmark for the field of non-Markovian decision process learning.Comment: 11 pages, 1 figure, 1 tabl

    Improving LSTM-CTC based ASR performance in domains with limited training data

    Full text link
    This paper addresses the observed performance gap between automatic speech recognition (ASR) systems based on Long Short Term Memory (LSTM) neural networks trained with the connectionist temporal classification (CTC) loss function and systems based on hybrid Deep Neural Networks (DNNs) trained with the cross entropy (CE) loss function on domains with limited data. We step through a number of experiments that show incremental improvements on a baseline EESEN toolkit based LSTM-CTC ASR system trained on the Librispeech 100hr (train-clean-100) corpus. Our results show that with effective combination of data augmentation and regularization, a LSTM-CTC based system can exceed the performance of a strong Kaldi based baseline trained on the same data.Comment: 13 pages Revised Figure

    Incremental Learning of Discrete Planning Domains from Continuous Perceptions

    Full text link
    We propose a framework for learning discrete deterministic planning domains. In this framework, an agent learns the domain by observing the action effects through continuous features that describe the state of the environment after the execution of each action. Besides, the agent learns its perception function, i.e., a probabilistic mapping between state variables and sensor data represented as a vector of continuous random variables called perception variables. We define an algorithm that updates the planning domain and the perception function by (i) introducing new states, either by extending the possible values of state variables, or by weakening their constraints; (ii) adapts the perception function to fit the observed data (iii) adapts the transition function on the basis of the executed actions and the effects observed via the perception function. The framework is able to deal with exogenous events that happen in the environment.Comment: Corrected lines 12 and 19 of algorithm 1: AL

    Incremental learning abstract discrete planning domains and mappings to continuous perceptions

    Full text link
    Most of the works on planning and learning, e.g., planning by (model based) reinforcement learning, are based on two main assumptions: (i) the set of states of the planning domain is fixed; (ii) the mapping between the observations from the real word and the states is implicitly assumed or learned offline, and it is not part of the planning domain. Consequently, the focus is on learning the transitions between states. In this paper, we drop such assumptions. We provide a formal framework in which (i) the agent can learn dynamically new states of the planning domain; (ii) the mapping between abstract states and the perception from the real world, represented by continuous variables, is part of the planning domain; (iii) such mapping is learned and updated along the "life" of the agent. We define an algorithm that interleaves planning, acting, and learning, and allows the agent to update the planning domain depending on how much it trusts the model w.r.t. the new experiences learned by executing actions. We define a measure of coherence between the planning domain and the real world as perceived by the agent. We test our approach showing that the agent learns increasingly coherent models, and that the system can scale to deal with models with an order of 10610^6 states

    The Utility of Abstaining in Binary Classification

    Full text link
    We explore the problem of binary classification in machine learning, with a twist - the classifier is allowed to abstain on any datum, professing ignorance about the true class label without committing to any prediction. This is directly motivated by applications like medical diagnosis and fraud risk assessment, in which incorrect predictions have potentially calamitous consequences. We focus on a recent spate of theoretically driven work in this area that characterizes how allowing abstentions can lead to fewer errors in very general settings. Two areas are highlighted: the surprising possibility of zero-error learning, and the fundamental tradeoff between predicting sufficiently often and avoiding incorrect predictions. We review efficient algorithms with provable guarantees for each of these areas. We also discuss connections to other scenarios, notably active learning, as they suggest promising directions of further inquiry in this emerging field.Comment: Short surve
    corecore