70 research outputs found
Elimination of defects in Si substrates by Rapid Thermal Process application
Nízká cena, rychlé dosažení vysokých teplot IR ohřevem, rychlé chlazení a vysoká efektivita, to jsou vlastnosti RTP (rychlé tepelné procesy). RTP se využívá pro žíhání, difúzi, kontaktování, oxidaci a další. Rychlá změna teploty a IR ohřev může být následován pozitivními efekty v křemíkových substrátech. Tato práce je zaměřena na žíhání pomocí RTP. Byl použit p-typový monokrystalický CZ křemík s rozdílnou objemovou dobou života minoritních nosičů. Doba života minoritních nosičů byla měřena MW-PCD (mikrovlnná fotovodivá detekce) před a po procesu ohřevu.Low cost, rapid and high thermal by IR heating, rapid cooling and high efficiency, there are RTP (Rapid Thermal Processing) properties. We can use RTP for annealing, diffusion, contacting, oxidation and others. Rapid temperature change and IR heating can be followed positive effects in the silicon substrate. This paper is focused on annealing by RTP. Wafers were p-type monocrystalline CZ silicon with different bulk minority carrier lifetime. Minority carrier lifetime was measured by MW-PCD (Microwave Photoconductance Decay) before and after thermal processing.
Iron-boron pair dissociation in silicon under strong illumination
The dissociation of iron-boron pairs (FeB) in Czochralski silicon under strong illumination was investigated. It is found that the dissociation process shows a double exponential dependence on time. The first fast process is suggested to be caused by a positive Fe in FeB capturing two electrons and diffusion triggered by the electron-phonon interactions, while the second slow one would involve the capturing of one electron followed by temperature dependent dissociation with an activation energy of (0.21 +/- 0.03) eV. The results are important for understanding and controlling the behavior of FeB in concentrator solar cells
Electronic properties and dopant pairing behavior of manganese in boron-doped silicon
Boron-doped silicon wafers implanted with low doses of manganese have been analyzed by means of deep-level transient spectroscopy(DLTS), injection-dependent lifetime spectroscopy, and temperature-dependent lifetime spectroscopy. While DLTSmeasurements allow the defect levels and majority carrier capture cross sections to be determined, the lifetime spectroscopy techniques allow analysis of the dominant recombination levels and the corresponding ratios of the capture cross sections. Interstitialmanganese and manganese-boron pairs were found to coexist, and their defect parameters have been investigated.One of the authors T.R. gratefully acknowledges a
scholarship of the German Federal Environmental Foundation
Deutsche Bundesstiftung Umwelt. Another D.M. is
supported by an Australian Research Council QEII Fellowship
Fast New Method for Temporary Chemical Passivation
The main material parameter of silicon, that influences the effectiveness of photovoltaic cells, is the minority carrier bulk lifetime.It may change in the technological process especially during high temperature operations. Monitoring of the carrier bulk-lifetimeis necessary for modifying the whole technological process of production. For the measurement of the minority carrier bulk-lifetimethe characterization method MW PCD (Microwave Photoconductance Decay) is used, where the result of measurement is the effectivecarrier lifetime, which is very dependent on the surface recombination velocity and therefore on the quality of a silicon surfacepassivation.This work deals with an examination of a different solution types for the chemical passivation of a silicon surface. Varioussolutions are tested on silicon wafers for their consequent comparison. The main purpose of this work is to find optimal solution, whichsuits the requirements of a time stability and start-up velocity of passivation, reproducibility of the measurements and a possibilityof a perfect cleaning of a passivating solution remains from a silicon surface. Another purpose of this work is to identify the parametersof other quinhydrone solutions with different concentrations as compared with the quinhydrone solution in methanol witha concentration of 0.07 mol/dm³ marked QM007 (referential solution).The method of an effective chemical passivation with a quinhydrone in methanol solution was suggested. The solution witha concentration of 0.07 mol /dm3 fulfills all required criteria. The work also confirms the influence of increased concentrationquinhydrone on the temporal stability of the passivation layer and the effect for textured silicon wafers. In conclusion, the influenceof an illumination and the temperature on the properties of the passivating solution QM007 is discussed
Thin film AlSb carrier transport properties and room temperature radiation response
Theoretical predictions for AlSb material properties have not been realized using bulk growth methods. This research was motivated by advances in molecular beam epitaxial (MBE) growth technology to produce high-quality thin-film AlSb for the purpose of evaluating transport properties and suitability for radiation detection. Simulations using MCNP5 were performed to benchmark an existing silicon surface barrier detector and to predict ideal AlSb detector behavior, with the finding that AlSb should have improved detection efficiency due to the larger atomic number of Sb compared with Si. GaSb diodes were fabricated by both homoepitaxial MBE and ion implantation methods in order to determine the effect on the radiation detection performance. It was found that the radiation response for the MBE grown GaSb diodes was very uniform, whereas the ion-implanted GaSb diodes exhibited highly variable spectral behavior. Two sets of AlSb heterostructures were fabricated by MBE methods; one for a Hall doping study and the other for a radiation response study. The samples were characterized for material quality using transmission electron microscopy (TEM), Nomarski imaging, atomic force microscopy (AFM), x-ray diffraction (XRD), I-V curve analysis, and Hall effect measurements. The Hall study samples were grown on semi-insulating (SI) GaAs substrates and contained a thin GaAs layer on top to protect the AlSb from oxygen. Doping for the AlSb layer was achieved using GaTe and Be for n- and p-type conductivity, respectively, with intended doping densities ranging from 1015 to 1017 cm-3. Results for net carrier concentration ranged 2×109 to 1×1017 cm-3, 60 to 3000 cm2/Vs for mobility, and 2 to 106 Ω-cm for resistivity, with the undoped AlSb samples presenting the best values. The radiation detector samples were designed to be PIN diodes, with undoped AlSb sandwiched between n-type GaAs substrate and p-type GaSb as a conductive oxygen-protective layer. Energy spectra were measured from 241Am, 252Cf, and 239Pu sealed sources, with good peak resolution and signal to noise response. Both GaSb PN diodes and AlSb PIN diodes exhibited larger pulses for smaller surface area samples, in good agreement with voltage-capacitance relationships for junctions. Microwave photoconductive decay (MW-PCD) measurements were performed on the Hall samples to determine the effect of doping on the minority carrier lifetime. Contrary to expectations, more heavily doped samples presented with longer decay times, some as large as hundreds of microseconds. There also appeared to be multiple exponential decay curves, potentially associated with different decay mechanisms. Collectively, the studies presented here reinforce the predicted nature of AlSb with respect to radiation detection
- …
