627,891 research outputs found
The likely effects of thermal climate change on vertebrate skeletal muscle mechanics with possible consequences for animal movement and behaviour
Climate change can involve alteration in the local temperature that an animal is exposed to, which in turn may affect skeletal muscle temperature. The underlying effects of temperature on the mechanical performance of skeletal muscle can affect organismal performance in key activities, such as locomotion and fitness-related behaviours, including prey capture and predator avoidance. The contractile performance of skeletal muscle is optimized within a specific thermal range. An increased muscle temperature can initially cause substantial improvements in force production, faster rates of force generation, relaxation, shortening, and production of power output. However, if muscle temperature becomes too high, then maximal force production and power output can decrease. Any deleterious effects of temperature change on muscle mechanics could be exacerbated by other climatic changes, such as drought, altered water, or airflow regimes that affect the environment the animal needs to move through. Many species will change their location on a daily, or even seasonal basis, to modulate the temperature that they are exposed to, thereby improving the mechanical performance of their muscle. Some species undergo seasonal acclimation to optimize muscle mechanics to longer-term changes in temperature or undergo dormancy to avoid extreme climatic conditions. As local climate alters, species either cope with the change, adapt, avoid extreme climate, move, or undergo localized extinction events. Given that such outcomes will be determined by organismal performance within the thermal environment, the effects of climate change on muscle mechanics could have a major impact on the ability of a population to survive in a particular location
The effects of inspiratory muscle training in older adults
Purpose: Declining inspiratory muscle function and structure and systemic low-level inflammation and oxidative stress may contribute to morbidity and mortality during normal ageing. Therefore, we examined the effects of inspiratory muscle training (IMT) in older adults on inspiratory muscle function and structure and systemic inflammation and oxidative stress, and re-examined the reported positive effects of IMT on respiratory muscle strength, inspiratory muscle endurance, spirometry, exercise performance, physical activity levels (PAL) and quality of life (QoL). Methods: Thirty-four healthy older adults (68 ± 3 years) with normal spirometry, respiratory muscle strength and physical fitness were divided equally into a pressure-threshold IMT or sham-hypoxic placebo group. Before and after an 8 week intervention, measurements were taken for dynamic inspiratory muscle function and inspiratory muscle endurance using a weighted plunger pressure-threshold loading device, diaphragm thickness using B-mode ultrasonography, plasma cytokine concentrations using immunoassays, DNA damage levels in peripheral blood mononuclear cells (PBMC) using Comet Assays, spirometry, maximal mouth pressures, exercise performance using a six minute walk test, PAL using a questionnaire and accelerometry, and QoL using a questionnaire
Research in human performance related to space: A compilation of three projects/proposals
Scientific projects were developed in order to maximize performance in space and assure physiological homeostatis upon return. Three projects that are related to this common goal were either initiated or formulated during the Faculty Fellowship Summer Program. The projects were entitled: (1) Effect of simulated weightlessness (bed rest) on muscle performance and morphology; (2) Effect of submaximal eccentric muscle contractions on muscle injury, soreness and performance: A grant proposal; and (3) Correlation between isolated joint dynamic muscle strength to end-effector strength of the push and pull extravehicular activity (EVA) ratchet maneuver. The purpose is to describe each of these studies in greater detail
Recommended from our members
Effect of Estrogen on Musculoskeletal Performance and Injury Risk.
Estrogen has a dramatic effect on musculoskeletal function. Beyond the known relationship between estrogen and bone, it directly affects the structure and function of other musculoskeletal tissues such as muscle, tendon, and ligament. In these other musculoskeletal tissues, estrogen improves muscle mass and strength, and increases the collagen content of connective tissues. However, unlike bone and muscle where estrogen improves function, in tendons and ligaments estrogen decreases stiffness, and this directly affects performance and injury rates. High estrogen levels can decrease power and performance and make women more prone for catastrophic ligament injury. The goal of the current work is to review the research that forms the basis of our understanding how estrogen affects muscle, tendon, and ligament and how hormonal manipulation can be used to optimize performance and promote female participation in an active lifestyle at any age
AAV-mediated transcription factor EB (TFEB) gene delivery ameliorates muscle pathology and function in the murine model of Pompe Disease
Pompe disease (PD) is a metabolic myopathy due to acid alpha-glucosidase deficiency and characterized by extensive glycogen storage and impaired autophagy. We previously showed that modulation of autophagy and lysosomal exocytosis by overexpression of the transcription factor EB (TFEB) gene was effective in improving muscle pathology in PD mice injected intramuscularly with an AAV-TFEB vector. Here we have evaluated the effects of TFEB systemic delivery on muscle pathology and on functional performance, a primary measure of efficacy in a disorder like PD. We treated 1-month-old PD mice with an AAV2.9-MCK-TFEB vector. An animal cohort was analyzed at 3 months for muscle and heart pathology. A second cohort was followed at different timepoints for functional analysis. In muscles from TFEB-treated mice we observed reduced PAS staining and improved ultrastructure, with reduced number and increased translucency of lysosomes, while total glycogen content remained unchanged. We also observed statistically significant improvements in rotarod performance in treated animals compared to AAV2.9-MCK-eGFP-treated mice at 5 and 8 months. Cardiac echography showed significant reduction in left-ventricular diameters. These results show that TFEB overexpression and modulation of autophagy result in improvements of muscle pathology and of functional performance in the PD murine model, with delayed disease progression
Comparison of thoracic and lumbar erector spinae muscle activation before and after a golf practice session
Lower back pain is commonly associated with golfers. The study aimed: to determine whether thoracic- and lumbar-erector-spinae muscle display signs of muscular fatigue after completing a golf practice session, and to examine the effect of the completed practice session on club head speed, ball speed and absolute carry distance performance variables. Fourteen right-handed male golfers participated in the laboratory-based-study. Surface electromyography (EMG) data was collected from the lead and trail sides of the thoracic- and lumbar-erector-spinae muscle. Normalized root mean squared (RMS) EMG activation levels and performance variables for the golf swings were compared before and after the session. Fatigue was assessed using median frequency (MDF) and RMS during the maximum voluntary contraction (MVC) performed before and after the session. No significant differences were observed in RMS thoracic- and lumbar-erector-spinae muscle activation levels during the five phases of the golf swing and performance variables before and after the session (p > .05). Significant changes were displayed in MDF and RMS in the lead lower lumbar and all trail regions of the erector-spinae muscle when comparing the MVC performed before and after the session (p < .05). Fatigue was evident in the trail side of the erector-spinae muscle after the session
Knee joint neuromuscular activation performance during muscle damage and superimposed fatigue
This study examined the concurrent effects of exercise-induced muscle damage and superimposed acute fatigue on the neuromuscular activation performance of the knee flexors of nine males (age: 26.7 ± 6.1yrs; height 1.81 ± 0.05m; body mass 81.2 ± 11.7kg [mean ± SD]). Measures were obtained during three experimental conditions: (i) FAT-EEVID, involving acute fatiguing exercise performed on each assessment occasion plus a single episode of eccentric exercise performed on the first occasion and after the fatigue trial; (ii) FAT, involving the fatiguing exercise only and; (iii) CON consisting of no exercise. Assessments were performed prior to (pre) and at lh, 24h, 48h, 72h, and 168h relative to the eccentric exercise. Repeated-measures ANOVAs showed that muscle damage within the FAT-EEVID condition elicited reductions of up to 38%, 24%) and 65%> in volitional peak force, electromechanical delay and rate of force development compared to baseline and controls, respectively (F[io, 80] = 2.3 to 4.6; p to 30.7%>) following acute fatigue (Fp; i6] = 4.3 to 9.1; p ; Fp, iq = 3.9; p <0.05). The safeguarding of evoked muscle activation capability despite compromised volitional performance might reveal aspects of capabilities for emergency and protective responses during episodes of fatigue and antecedent muscle damaging exercise
Ultrasound Muscle Assessment and Nutritional Status in Institutionalized Older Adults: A Pilot Study
Muscle thickness, measured by ultrasonography, has been investigated for nutritional
assessment in older adults, however the associations between muscle ultrasound parameters in the
lower limb and nutritional status have not been studied. The aim of this study was to investigate
the relationship between muscle thickness echo intensity (EI), and nutritional status in home care
residents. A cross sectional study was conducted involving 19 older adults from a home care in
Malaga (Spain). We evaluated lower leg muscles by ultrasound, anthropometric data, physical
function (measured by gait speed and the Short Physical Performance Battery), strength (handgrip and
knee extensors strength) and nutritional status across the Mini-Nutritional Assessment Short-Form
(MNA-SF). We found that muscle thickness assessed by ultrasonography independently predicts
nutritional status by MNA-SF and after adjusting for handgrip strength or age and sex. As secondary
findings, we found relations between strength, functional capacity and the MNA-SF test. These
results suggest that lower leg muscle ultrasound parameters could be used as a low-cost objective
method for muscle evaluation in nutritional assessment in older adults
Temperature acclimatisation of swimming performance in the European Queen Scallop
The phenotypic plasticity of muscle performance and locomotory physiology allows the maintenance of essential activity capacity in the face of environmental change, and has been demonstrated in a wide phylogenetic range of eurythermal vertebrates. This study used the scallop, Aequipecten opercularis, as a model eurythermal invertebrate. Animals caught in different seasons demonstrated marked differences in their swimming performance and the relationship between, temperature and performance. When stimulated to swim at natural ranges of temperature, Winter (cold acclimatised), animals accelerated faster than autumn collected animals swimming at the same temperature (x 2 at 11degreesC) and attained higher velocities during jetting. The effects of acclimatisation were confined to the jetting phase and may be a mechanism for the maintenance of acceleration during predator-prey interactions. This is the first demonstration of the thermal acclimatisation of muscle performance in a mollusc and one of very few studies in invertebrates
- …
