1,589 research outputs found

    An Entry Point for Formal Methods: Specification and Analysis of Event Logs

    Full text link
    Formal specification languages have long languished, due to the grave scalability problems faced by complete verification methods. Runtime verification promises to use formal specifications to automate part of the more scalable art of testing, but has not been widely applied to real systems, and often falters due to the cost and complexity of instrumentation for online monitoring. In this paper we discuss work in progress to apply an event-based specification system to the logging mechanism of the Mars Science Laboratory mission at JPL. By focusing on log analysis, we exploit the "instrumentation" already implemented and required for communicating with the spacecraft. We argue that this work both shows a practical method for using formal specifications in testing and opens interesting research avenues, including a challenging specification learning problem

    A formal approach to validation and verification for knowledge-based control systems

    Get PDF
    As control systems become more complex in response to desires for greater system flexibility, performance and reliability, the promise is held out that artificial intelligence might provide the means for building such systems. An obstacle to the use of symbolic processing constructs in this domain is the need for verification and validation (V and V) of the systems. Techniques currently in use do not seem appropriate for knowledge-based software. An outline of a formal approach to V and V for knowledge-based control systems is presented

    Credible Autocoding of Convex Optimization Algorithms

    Full text link
    The efficiency of modern optimization methods, coupled with increasing computational resources, has led to the possibility of real-time optimization algorithms acting in safety critical roles. There is a considerable body of mathematical proofs on on-line optimization programs which can be leveraged to assist in the development and verification of their implementation. In this paper, we demonstrate how theoretical proofs of real-time optimization algorithms can be used to describe functional properties at the level of the code, thereby making it accessible for the formal methods community. The running example used in this paper is a generic semi-definite programming (SDP) solver. Semi-definite programs can encode a wide variety of optimization problems and can be solved in polynomial time at a given accuracy. We describe a top-to-down approach that transforms a high-level analysis of the algorithm into useful code annotations. We formulate some general remarks about how such a task can be incorporated into a convex programming autocoder. We then take a first step towards the automatic verification of the optimization program by identifying key issues to be adressed in future work

    Using Simulation-Based Inference with Panel Data in Health Economics

    Get PDF
    Panel datasets provide a rich source of information for health economists, offering the scope to control for individual heterogeneity and to model the dynamics of individual behaviour. However the qualitative or categorical measures of outcome often used in health economics create special problems for estimating econometric models. Allowing a flexible specification of individual heterogeneity leads to models involving higher order integrals that cannot be handled by conventional numerical methods. The dramatic growth in computing power over recent years has been accompanied by the development of simulation estimators that solve this problem. This review uses binary choice models to show what can be done with conventional methods and how the range of models can be expanded by using simulation methods. Practical applications of the methods are illustrated using on health from the British Household Panel Survey (BHPS)Econometrics, panel data, simulation methods, determinants of health

    Using Simulation-based Inference with Panel Data in Health Economics

    Get PDF
    Panel datasets provide a rich source of information for health economists, offering the scope to control for individual heterogeneity and to model the dynamics of individual behaviour. However the qualitative or categorical measures of outcome often used in health economics create special problems for estimating econometric models. Allowing a flexible specification of the autocorrelation induced by individual heterogeneity leads to models involving higher order integrals that cannot be handled by conventional numerical methods. The dramatic growth in computing power over recent years has been accompanied by the development of simulation-based estimators that solve this problem. This review uses binary choice models to show what can be done with conventional methods and how the range of models can be expanded by using simulation methods. Practical applications of the methods are illustrated using data on health from the British Household Panel Survey (BHPS).

    On Supervisor Synthesis via Active Automata Learning

    Get PDF
    Our society\u27s reliance on computer-controlled systems is rapidly growing. Such systems are found in various devices, ranging from simple light switches to safety-critical systems like autonomous vehicles. In the context of safety-critical systems, safety and correctness are of utmost importance. Faults and errors could have catastrophic consequences. Thus, there is a need for rigorous methodologies that help provide guarantees of safety and correctness. Supervisor synthesis, the concept of being able to mathematically synthesize a supervisor that ensures that the closed-loop system behaves in accordance with known requirements, can indeed help.This thesis introduces supervisor learning, an approach to help automate the learning of supervisors in the absence of plant models. Traditionally, supervisor synthesis makes use of plant models and specification models to obtain a supervisor. Industrial adoption of this method is limited due to, among other things, the difficulty in obtaining usable plant models. Manually creating these plant models is an error-prone and time-consuming process. Thus, supervisor learning intends to improve the industrial adoption of supervisory control by automating the process of generating supervisors in the absence of plant models.The idea here is to learn a supervisor for the system under learning (SUL) by active interaction and experimentation. To this end, we present two algorithms, SupL*, and MSL, that directly learn supervisors when provided with a simulator of the SUL and its corresponding specifications. SupL* is a language-based learner that learns one supervisor for the entire system. MSL, on the other hand, learns a modular supervisor, that is, several smaller supervisors, one for each specification. Additionally, a third algorithm, MPL, is introduced for learning a modular plant model.The approach is realized in the tool MIDES and has been used to learn supervisors in a virtual manufacturing setting for the Machine Buffer Machine example, as well as learning a model of the Lateral State Manager, a sub-component of a self-driving car. These case studies show the feasibility and applicability of the proposed approach, in addition to helping identify future directions for research

    Programming Robots for Activities of Everyday Life

    Get PDF
    Text-based programming remains a challenge to novice programmers in\ua0all programming domains including robotics. The use of robots is gainingconsiderable traction in several domains since robots are capable of assisting\ua0humans in repetitive and hazardous tasks. In the near future, robots willbe used in tasks of everyday life in homes, hotels, airports, museums, etc.\ua0However, robotic missions have been either predefined or programmed usinglow-level APIs, making mission specification task-specific and error-prone.\ua0To harness the full potential of robots, it must be possible to define missionsfor specific applications domains as needed. The specification of missions of\ua0robotic applications should be performed via easy-to-use, accessible ways, and\ua0at the same time, be accurate, and unambiguous. Simplicity and flexibility in\ua0programming such robots are important, since end-users come from diverse\ua0domains, not necessarily with suffcient programming knowledge.The main objective of this licentiate thesis is to empirically understand the\ua0state-of-the-art in languages and tools used for specifying robot missions byend-users. The findings will form the basis for interventions in developing\ua0future languages for end-user robot programming.During the empirical study, DSLs for robot mission specification were\ua0analyzed through published literature, their websites, user manuals, samplemissions and using the languages to specify missions for supported robots.After extracting data from 30 environments, 133 features were identified.\ua0A feature matrix mapping the features to the environments was developedwith a feature model for robotic mission specification DSLs.Our results show that most end-user facing environments exist in the\ua0education domain for teaching novice programmers and STEM subjects. Mostof the visual languages are developed using Blockly and Scratch libraries.\ua0The end-user domain abstraction needs more work since most of the visualenvironments abstract robotic and programming language concepts but not\ua0end-user concepts. In future works, it is important to focus on the development\ua0of reusable libraries for end-user concepts; and further, explore how end-user\ua0facing environments can be adapted for novice programmers to learn\ua0general programming skills and robot programming in low resource settings\ua0in developing countries, like Uganda
    • …
    corecore