3 research outputs found

    Technologies for Biomechanically-Informed Image Guidance of Laparoscopic Liver Surgery

    Get PDF
    Laparoscopic surgery for liver resection has a number medical advantages over open surgery, but also comes with inherent technical challenges. The surgeon only has a very limited field of view through the imaging modalities routinely employed intra-operatively, laparoscopic video and ultrasound, and the pneumoperitoneum required to create the operating space and gaining access to the organ can significantly deform and displace the liver from its pre-operative configuration. This can make relating what is visible intra-operatively to the pre-operative plan and inferring the location of sub-surface anatomy a very challenging task. Image guidance systems can help overcome these challenges by updating the pre-operative plan to the situation in theatre and visualising it in relation to the position of surgical instruments. In this thesis, I present a series of contributions to a biomechanically-informed image-guidance system made during my PhD. The most recent one is work on a pipeline for the estimation of the post-insufflation configuration of the liver by means of an algorithm that uses a database of segmented training images of patient abdomens where the post-insufflation configuration of the liver is known. The pipeline comprises an algorithm for inter and intra-subject registration of liver meshes by means of non-rigid spectral point-correspondence finding. My other contributions are more fundamental and less application specific, and are all contained and made available to the public in the NiftySim open-source finite element modelling package. Two of my contributions to NiftySim are of particular interest with regards to image guidance of laparoscopic liver surgery: 1) a novel general purpose contact modelling algorithm that can be used to simulate contact interactions between, e.g., the liver and surrounding anatomy; 2) membrane and shell elements that can be used to, e.g., simulate the Glisson capsule that has been shown to significantly influence the organ’s measured stiffness

    Development of an image guidance system for laparoscopic liver surgery and evaluation of optical and computer vision techniques for the assessment of liver tissue

    Get PDF
    Introduction: Liver resection is increasingly being carried out via the laparoscopic approach (keyhole surgery) because there is mounting evidence that it benefits patients by reducing pain and length of hospitalisation. There are however ongoing concerns about oncological radicality (i.e. ability to completely remove cancer) and an inability to control massive haemorrhage. These issues can partially be attributed to a loss of sensation such as depth perception, tactile feedback and a reduced field of view. Utilisation of optical imaging and computer vision may be able to compensate for some of the lost sensory input because these modalities can facilitate visualisation of liver tissue and structural anatomy. Their use in laparoscopy is attractive because it is easy to adapt or integrate with existing technology. The aim of this thesis is to explore to what extent this technology can aid in the detection of normal and abnormal liver tissue and structures. / Methods: The current state of the art for optical imaging and computer vision in laparoscopic liver surgery is assessed in a systematic review. Evaluation of confocal laser endomicroscopy is carried out on a murine and porcine model of liver disease. Multispectral near infrared imaging is evaluated on ex-vivo liver specimen. Video magnification is assessed on a mechanical flow phantom and a porcine model of liver disease. The latter model was also employed to develop a computer vision based image guidance system for laparoscopic liver surgery. This image guidance system is further evaluated in a clinical feasibility study. Where appropriate, experimental findings are substantiated with statistical analysis. / Results: Use of confocal laser endomicroscopy enabled discrimination between cancer and normal liver tissue with a sub-millimetre precision. This technology also made it possible to verify the adequacy of thermal liver ablation. Multispectral imaging, at specific wavelengths was shown to have the potential to highlight the presence of colorectal and hepatocellular cancer. An image reprocessing algorithm is proposed to simplify visual interpretation of the resulting images. It is shown that video magnification can determine the presence of pulsatile motion but that it cannot reliably determine the extent of motion. Development and performance metrics of an image guidance system for laparoscopic liver surgery are outlined. The system was found to improve intraoperative orientation more development work is however required to enable reliable prediction of oncological margins. / Discussion: The results in this thesis indicate that confocal laser endomicroscopy and image guidance systems have reached a development stage where their intraoperative use may benefit surgeons by visualising features of liver anatomy and tissue characteristics. Video magnification and multispectral imaging require more development and suggestions are made to direct this work. It is also highlighted that it is crucial to standardise assessment methods for these technologies which will allow a more direct comparison between the outcomes of different groups. Limited imaging depth is a major restriction of these technologies but this may be overcome by combining them with preoperatively obtained imaging data. Just like laparoscopy, optical imaging and computer vision use functions of light, a shared characteristic that makes their combined use complementary
    corecore