28,894 research outputs found

    MPI Phantom Study with A High-Performing Multicore Tracer Made by Coprecipitation

    Get PDF
    Magnetic particle imaging (MPI) is a new imaging technique that detects the spatial distribution of magnetic nanoparticles (MNP) with the option of high temporal resolution. MPI relies on particular MNP as tracers with tailored characteristics for improvement of sensitivity and image resolution. For this reason, we developed optimized multicore particles (MCP 3) made by coprecipitation via synthesis of green rust and subsequent oxidation to iron oxide cores consisting of a magnetite/maghemite mixed phase. MCP 3 shows high saturation magnetization close to that of bulk maghemite and provides excellent magnetic particle spectroscopy properties which are superior to Resovist® and any other up to now published MPI tracers made by coprecipitation. To evaluate the MPI characteristics of MCP 3 two kinds of tube phantoms were prepared and investigated to assess sensitivity, spatial resolution, artifact severity, and selectivity. Resovist® was used as standard of comparison. For image reconstruction, the regularization factor was optimized, and the resulting images were investigated in terms of quantifying of volumes and iron content. Our results demonstrate the superiority of MCP 3 over Resovist® for all investigated MPI characteristics and suggest that MCP 3 is promising for future experimental in vivo studies

    Building Near-Real-Time Processing Pipelines with the Spark-MPI Platform

    Full text link
    Advances in detectors and computational technologies provide new opportunities for applied research and the fundamental sciences. Concurrently, dramatic increases in the three Vs (Volume, Velocity, and Variety) of experimental data and the scale of computational tasks produced the demand for new real-time processing systems at experimental facilities. Recently, this demand was addressed by the Spark-MPI approach connecting the Spark data-intensive platform with the MPI high-performance framework. In contrast with existing data management and analytics systems, Spark introduced a new middleware based on resilient distributed datasets (RDDs), which decoupled various data sources from high-level processing algorithms. The RDD middleware significantly advanced the scope of data-intensive applications, spreading from SQL queries to machine learning to graph processing. Spark-MPI further extended the Spark ecosystem with the MPI applications using the Process Management Interface. The paper explores this integrated platform within the context of online ptychographic and tomographic reconstruction pipelines.Comment: New York Scientific Data Summit, August 6-9, 201

    Distributed and parallel sparse convex optimization for radio interferometry with PURIFY

    Full text link
    Next generation radio interferometric telescopes are entering an era of big data with extremely large data sets. While these telescopes can observe the sky in higher sensitivity and resolution than before, computational challenges in image reconstruction need to be overcome to realize the potential of forthcoming telescopes. New methods in sparse image reconstruction and convex optimization techniques (cf. compressive sensing) have shown to produce higher fidelity reconstructions of simulations and real observations than traditional methods. This article presents distributed and parallel algorithms and implementations to perform sparse image reconstruction, with significant practical considerations that are important for implementing these algorithms for Big Data. We benchmark the algorithms presented, showing that they are considerably faster than their serial equivalents. We then pre-sample gridding kernels to scale the distributed algorithms to larger data sizes, showing application times for 1 Gb to 2.4 Tb data sets over 25 to 100 nodes for up to 50 billion visibilities, and find that the run-times for the distributed algorithms range from 100 milliseconds to 3 minutes per iteration. This work presents an important step in working towards computationally scalable and efficient algorithms and implementations that are needed to image observations of both extended and compact sources from next generation radio interferometers such as the SKA. The algorithms are implemented in the latest versions of the SOPT (https://github.com/astro-informatics/sopt) and PURIFY (https://github.com/astro-informatics/purify) software packages {(Versions 3.1.0)}, which have been released alongside of this article.Comment: 25 pages, 5 figure

    Implicit Density Estimation by Local Moment Matching to Sample from Auto-Encoders

    Full text link
    Recent work suggests that some auto-encoder variants do a good job of capturing the local manifold structure of the unknown data generating density. This paper contributes to the mathematical understanding of this phenomenon and helps define better justified sampling algorithms for deep learning based on auto-encoder variants. We consider an MCMC where each step samples from a Gaussian whose mean and covariance matrix depend on the previous state, defines through its asymptotic distribution a target density. First, we show that good choices (in the sense of consistency) for these mean and covariance functions are the local expected value and local covariance under that target density. Then we show that an auto-encoder with a contractive penalty captures estimators of these local moments in its reconstruction function and its Jacobian. A contribution of this work is thus a novel alternative to maximum-likelihood density estimation, which we call local moment matching. It also justifies a recently proposed sampling algorithm for the Contractive Auto-Encoder and extends it to the Denoising Auto-Encoder
    corecore