23,137 research outputs found

    3d-SMRnet: Achieving a new quality of MPI system matrix recovery by deep learning

    Full text link
    Magnetic particle imaging (MPI) data is commonly reconstructed using a system matrix acquired in a time-consuming calibration measurement. The calibration approach has the important advantage over model-based reconstruction that it takes the complex particle physics as well as system imperfections into account. This benefit comes for the cost that the system matrix needs to be re-calibrated whenever the scan parameters, particle types or even the particle environment (e.g. viscosity or temperature) changes. One route for reducing the calibration time is the sampling of the system matrix at a subset of the spatial positions of the intended field-of-view and employing system matrix recovery. Recent approaches used compressed sensing (CS) and achieved subsampling factors up to 28 that still allowed reconstructing MPI images of sufficient quality. In this work, we propose a novel framework with a 3d-System Matrix Recovery Network and demonstrate it to recover a 3d system matrix with a subsampling factor of 64 in less than one minute and to outperform CS in terms of system matrix quality, reconstructed image quality, and processing time. The advantage of our method is demonstrated by reconstructing open access MPI datasets. The model is further shown to be capable of inferring system matrices for different particle types

    rPICARD: A CASA-based Calibration Pipeline for VLBI Data

    Full text link
    Currently, HOPS and AIPS are the primary choices for the time-consuming process of (millimeter) Very Long Baseline Interferometry (VLBI) data calibration. However, for a full end-to-end pipeline, they either lack the ability to perform easily scriptable incremental calibration or do not provide full control over the workflow with the ability to manipulate and edit calibration solutions directly. The Common Astronomy Software Application (CASA) offers all these abilities, together with a secure development future and an intuitive Python interface, which is very attractive for young radio astronomers. Inspired by the recent addition of a global fringe-fitter, the capability to convert FITS-IDI files to measurement sets, and amplitude calibration routines based on ANTAB metadata, we have developed the the CASA-based Radboud PIpeline for the Calibration of high Angular Resolution Data (rPICARD). The pipeline will be able to handle data from multiple arrays: EHT, GMVA, VLBA and the EVN in the first release. Polarization and phase-referencing calibration are supported and a spectral line mode will be added in the future. The large bandwidths of future radio observatories ask for a scalable reduction software. Within CASA, a message passing interface (MPI) implementation is used for parallelization, reducing the total time needed for processing. The most significant gain is obtained for the time-consuming fringe-fitting task where each scan be processed in parallel.Comment: 6 pages, 1 figure, EVN 2018 symposium proceeding

    Polyhedral Predictive Regions For Power System Applications

    Get PDF
    Despite substantial improvement in the development of forecasting approaches, conditional and dynamic uncertainty estimates ought to be accommodated in decision-making in power system operation and market, in order to yield either cost-optimal decisions in expectation, or decision with probabilistic guarantees. The representation of uncertainty serves as an interface between forecasting and decision-making problems, with different approaches handling various objects and their parameterization as input. Following substantial developments based on scenario-based stochastic methods, robust and chance-constrained optimization approaches have gained increasing attention. These often rely on polyhedra as a representation of the convex envelope of uncertainty. In the work, we aim to bridge the gap between the probabilistic forecasting literature and such optimization approaches by generating forecasts in the form of polyhedra with probabilistic guarantees. For that, we see polyhedra as parameterized objects under alternative definitions (under L1L_1 and LL_\infty norms), the parameters of which may be modelled and predicted. We additionally discuss assessing the predictive skill of such multivariate probabilistic forecasts. An application and related empirical investigation results allow us to verify probabilistic calibration and predictive skills of our polyhedra.Comment: 8 page
    corecore