1,037,209 research outputs found

    Growth-Induced Strain in Chemical Vapor Deposited Monolayer MoS2: Experimental and Theoretical Investigation

    Full text link
    Monolayer molybdenum disulphide (MoS2_2) is a promising two-dimensional (2D) material for nanoelectronic and optoelectronic applications. The large-area growth of MoS2_2 has been demonstrated using chemical vapor deposition (CVD) in a wide range of deposition temperatures from 600 {\deg}C to 1000 {\deg}C. However, a direct comparison of growth parameters and resulting material properties has not been made so far. Here, we present a systematic experimental and theoretical investigation of optical properties of monolayer MoS2_2 grown at different temperatures. Micro-Raman and photoluminescence (PL) studies reveal observable inhomogeneities in optical properties of the as-grown single crystalline grains of MoS2_2. Close examination of the Raman and PL features clearly indicate that growth-induced strain is the main source of distinct optical properties. We carry out density functional theory calculations to describe the interaction of growing MoS2_2 layers with the growth substrate as the origin of strain. Our work explains the variation of band gap energies of CVD-grown monolayer MoS2_2, extracted using PL spectroscopy, as a function of deposition temperature. The methodology has general applicability to model and predict the influence of growth conditions on strain in 2D materials.Comment: 37 pages, 6 figures, 10 figures in supporting informatio

    Fast and Simple Mixture of Softmaxes with BPE and Hybrid-LightRNN for Language Generation

    Full text link
    Mixture of Softmaxes (MoS) has been shown to be effective at addressing the expressiveness limitation of Softmax-based models. Despite the known advantage, MoS is practically sealed by its large consumption of memory and computational time due to the need of computing multiple Softmaxes. In this work, we set out to unleash the power of MoS in practical applications by investigating improved word coding schemes, which could effectively reduce the vocabulary size and hence relieve the memory and computation burden. We show both BPE and our proposed Hybrid-LightRNN lead to improved encoding mechanisms that can halve the time and memory consumption of MoS without performance losses. With MoS, we achieve an improvement of 1.5 BLEU scores on IWSLT 2014 German-to-English corpus and an improvement of 0.76 CIDEr score on image captioning. Moreover, on the larger WMT 2014 machine translation dataset, our MoS-boosted Transformer yields 29.5 BLEU score for English-to-German and 42.1 BLEU score for English-to-French, outperforming the single-Softmax Transformer by 0.8 and 0.4 BLEU scores respectively and achieving the state-of-the-art result on WMT 2014 English-to-German task

    Heterojunction Hybrid Devices from Vapor Phase Grown MoS2_{2}

    Full text link
    We investigate a vertically-stacked hybrid photodiode consisting of a thin n-type molybdenum disulfide (MoS2_{2}) layer transferred onto p-type silicon. The fabrication is scalable as the MoS2_{2} is grown by a controlled and tunable vapor phase sulfurization process. The obtained large-scale p-n heterojunction diodes exhibit notable photoconductivity which can be tuned by modifying the thickness of the MoS2_{2} layer. The diodes have a broad spectral response due to direct and indirect band transitions of the nanoscale MoS2_{2}. Further, we observe a blue-shift of the spectral response into the visible range. The results are a significant step towards scalable fabrication of vertical devices from two-dimensional materials and constitute a new paradigm for materials engineering.Comment: 23 pages with 4 figures. This article has been published in Scientific Reports. (26 June 2014, doi:10.1038/srep05458
    corecore