16,611 research outputs found

    Asteroseismology of exoplanets host stars: the special case of ι\iota Horologii (HD17051)

    Full text link
    {This paper presents detailed analysis and modelisation of the star HD17051 (alias ι\iota Hor), which appears as a specially interesting case among exoplanet host stars. As most of these stars, ι\iota Hor presents a metallicity excess which has been measured by various observers who give different results, ranging from [Fe/H] = 0.11 to 0.26, associated with different atmospheric parameters. Meanwhile the luminosity of the star may be determined owing to Hipparcos parallax. Although in the southern hemisphere, this star belongs to the Hyades stream and its external parameters show that it could even be one of the Hyades stars ejected during cluster formation. The aim of this work was to gather and analyse our present knowledge on this star and to prepare seismic tests for future observations with the HARPS spectrometer (planned for November 2006).} {We have computed evolutionary tracks with various metallicities, in the two frameworks of primordial overmetallicity and accretion. We have concentrated on models inside the error boxes given by the various observers in the log g - log Teff_{eff} diagram. We then computed the adiabatic oscillation frequencies of these models to prepare future observations.} {The detailed analysis of ι\iota Hor presented in this paper already allowed to constrain its external parameters, mass and age. Some values given in the literature could be rejected as inconsistent with the overall analysis. We found that a model computed with the Hyades parameters (age, metallicity) was clearly acceptable, but other ones were possible too. We are confident that observations with HARPS will allow for a clear conclusion about this star and that it will bring important new light on the physics of exoplanet host stars.}Comment: to be published in Astronomy and Astrophysic

    Model adaptivity for finite element analysis of thin or thick plates based on equilibrated boundary stress resultants

    Get PDF
    Purpose – The purpose of this paper is to address error-controlled adaptive finite element (FE) method for thin and thick plates. A procedure is presented for determining the most suitable plate model (among available hierarchical plate models) for each particular FE of the selected mesh, that is provided as the final output of the mesh adaptivity procedure. \ud \ud Design/methodology/approach – The model adaptivity procedure can be seen as an appropriate extension to model adaptivity for linear elastic plates of so-called equilibrated boundary traction approach error estimates, previously proposed for 2D/3D linear elasticity. Model error indicator is based on a posteriori element-wise computation of improved (continuous) equilibrated boundary stress resultants, and on a set of hierarchical plate models. The paper illustrates the details of proposed model adaptivity procedure for choosing between two most frequently used plate models: the one of Kirchhoff and the other of Reissner-Mindlin. The implementation details are provided for a particular case of the discrete Kirchhoff quadrilateral four-node plate FE and the corresponding Reissner-Mindlin quadrilateral with the same number of nodes. The key feature for those elements that they both provide the same quality of the discretization space (and thus the same discretization error) is the one which justifies uncoupling of the proposed model adaptivity from the mesh adaptivity. \ud \ud Findings – Several numerical examples are presented in order to illustrate a very satisfying performance of the proposed methodology in guiding the final choice of the optimal model and mesh in analysis of complex plate structures. \ud \ud Originality/value – The paper confirms that one can make an automatic selection of the most appropriate plate model for thin and thick plates on the basis of proposed model adaptivity procedure.\u

    Spline regression for zero-inflated models

    Full text link
    We propose a regression model for count data when the classical generalized linear model approach is too rigid due to a high outcome of zero counts and a nonlinear influence of continuous covariates. Zero-Inflation is applied to take into account the presence of excess zeros with separate link functions for the zero and the nonzero component. Nonlinearity in covariates is captured by spline functions based on B-splines. Our algorithm relies on maximum-likelihood estimation and allows for adaptive box-constrained knots, thus improving the goodness of the spline fit and allowing for detection of sensitivity changepoints. A simulation study substantiates the numerical stability of the algorithm to infer such models. The AIC criterion is shown to serve well for model selection, in particular if nonlinearities are weak such that BIC tends to overly simplistic models. We fit the introduced models to real data of children's dental sanity, linking caries counts with the so-called Body-Mass-Index (BMI) and other socioeconomic factors. This reveals a puzzling nonmonotonic influence of BMI on caries counts which is yet to be explained by clinical experts

    Fast-neutron induced background in LaBr3:Ce detectors

    Full text link
    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr3:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range En = 0.5-10 MeVComment: 28 pages, 10 figures, 4 Table

    Redshift-space distortions of galaxies, clusters and AGN: testing how the accuracy of growth rate measurements depends on scales and sample selections

    Full text link
    Redshift-space clustering anisotropies caused by cosmic peculiar velocities provide a powerful probe to test the gravity theory on large scales. However, to extract unbiased physical constraints, the clustering pattern has to be modelled accurately, taking into account the effects of non-linear dynamics at small scales, and properly describing the link between the selected cosmic tracers and the underlying dark matter field. We use a large hydrodynamic simulation to investigate how the systematic error on the linear growth rate, ff, caused by model uncertainties, depends on sample selections and comoving scales. Specifically, we measure the redshift-space two-point correlation function of mock samples of galaxies, galaxy clusters and Active Galactic Nuclei, extracted from the Magneticum simulation, in the redshift range 0.2 < z < 2, and adopting different sample selections. We estimate fσ8f\sigma_8 by modelling both the monopole and the full two-dimensional anisotropic clustering, using the dispersion model. We find that the systematic error on fσ8f\sigma_8 depends significantly on the range of scales considered for the fit. If the latter is kept fixed, the error depends on both redshift and sample selection, due to the scale-dependent impact of non-linearities, if not properly modelled. On the other hand, we show that it is possible to get unbiased constraints on fσ8f\sigma_8 provided that the analysis is restricted to a proper range of scales, that depends non trivially on the properties of the sample. This can have a strong impact on multiple tracers analyses, and when combining catalogues selected at different redshifts.Comment: 17 pages, 14 figures. Accepted for publication in Astronomy & Astrophysic
    corecore