43,629 research outputs found

    The effect of manganese oxide on the sinterability of hydroxyapatite

    Get PDF
    The sinterability of manganese oxide (MnO2) doped hydroxyapatite (HA) ranging from 0.05 to 1 wt% was investigated. Green samples were prepared and sintered in air at temperatures ranging from 1000 to 1400 °C. Sintered bodies were characterized to determine the phase stability, grain size, bulk density, hardness, fracture toughness and Young's modulus. XRD analysis revealed that the HA phase stability was not disrupted throughout the sintering regime employed. In general, samples containing less than 0.5 wt% MnO2 and when sintered at lower temperatures exhibited higher mechanical properties than the undoped HA. The study revealed that all the MnO2-doped HA achieved >99% relative density when sintered at 1100–1250 °C as compared to the undoped HA which could only attained highest value of 98.9% at 1150 °C. The addition of 0.05 wt% MnO2 was found to be most beneficial as the samples exhibited the highest hardness of 7.58 GPa and fracture toughness of 1.65 MPam1/2 as compared to 5.72 GPa and 1.22 MPam1/2 for the undoped HA when sintered at 1000 °C. Additionally, it was found that the MnO2-doped samples attained E values above 110 GPa when sintered at temperature as low as 1000 °C if compared to 1050 °C for the undoped HA

    Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide

    Get PDF
    The catalytic activity of PdO/MnO2 and Rh2O3/MnO2 is investigated for NO-CO redox reaction. Supported catalysts are prepared by wet impregnation method. Among the tested catalysts, PdO/MnO2 shows higher activity for this reaction. Active metal dispersion on MnO2 enhances the selectivity for N2 over N2O in this reaction. The XRD substantiate the formation of MnO2 monophasic phase. SEM images show the formation of elongated particles. TEM images indicate nano-size rod-like morphologies. An increase in the catalytic activity is observed on supported Pd and Rh oxides on MnO2. Temperature programed desorption studies with NO and CO are undertaken to investigate the catalytic surface studies. © 2015 BCREC UNDIP. All rights reserve

    Optimization of parameters for the dissolution of Mn from manganese nodules with the use of tailings in an acid medium

    Get PDF
    Manganese nodules are an attractive source of base metals and critical and rare elements and are required to meet a high demand of today’s industry. In previous studies, it has been shown that high concentrations of reducing agent (Fe) in the system are beneficial for the rapid extraction of manganese. However, it is necessary to optimize the operational parameters in order to maximize Mn recovery. In this study, a statistical analysis was carried out using factorial experimental design for the main parameters, including time, MnO2/Fe2O3 ratio, and H2SO4 concentration. After this, Mn recovery tests were carried out over time at di_erent ratios of MnO2/Fe2O3 and H2SO4 concentrations, where the potential and pH of the system were measured. Finally, it is concluded that high concentrations of FeSO4 in the system allow operating in potential and pH ranges (0.2 to 1.2 V and 1.8 to 0.1) that favor the formation of Fe2+ and Fe3+, which enable high extractions of Mn (73%) in short periods of time (5 to 20 min) operating with an optimum MnO2/Fe2O3 ratio of 1:3 and a concentration of 0.1 mol/L of H2SO4.The authors are grateful for the contribution of the Scientific Equipment Unit- MAINI of the Universidad Católica del Norte for aiding in generating data by automated electronic microscopy QEMSCAN®, and for facilitating the chemical analysis of the solutions. We are also grateful to the Altonorte Mining Company for supporting this research and providing slag for this study, and we thank Marina Vargas Aleuy, María Barraza Bustos and Carolina Ossandón Cortés of the Universidad Católica del Norte for supporting the experimental tests
    corecore