3,601 research outputs found

    Red-emitting Ba2Si5N8Eu2+ conversion phosphor: A new selection for enhancing the optical performance of the in-cup packaging MCW-LEDs

    Get PDF
    In this research, the influence of the red-emitting Ba2Si5N8Eu2+ convention phosphor on the optical performance of the 7,000K and 7,700K in-cup packaging multi-chip white LEDs (MCW-LEDs) is investigated. The effect of the red-emitting Ba2Si5N8Eu2+ convention phosphor is demonstrated based on Mie Theory by Mat Lab and Light Tools software. The research results indicated that the optical performance of MCW-LEDs was crucially affected by the red-emitting Ba2Si5N8Eu2+ phosphor's concentration. This paper provides an essential recommendation for selecting and developing the phosphor materials for MW-LEDs manufacturing.Web of Science51art. no. 148615

    Cathodoluminescence studies of phosphors in a scanning electron microscope

    Get PDF
    Cathodoluminescence studies are reported of phosphors in a field emission scanning electron microscope (FESEM). A number of phosphor materials have been studied and exhibited a pronounced comet-like structure at high scan rates, because the particle continued to emit light after the beam had moved onto subsequent pixels. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. This technique provides a simple and convenient way to study the decay times of individual particles

    Charge transfer induced energy storage in CaZnOS:Mn : insight from experimental and computational spectroscopy

    Get PDF
    CaZnOS: Mn2+ is a rare-earth-free luminescent compound with an orange broadband emission at 612 nm, featuring pressure sensing capabilities, often explained by defect levels where energy can be stored. Despite recent efforts from experimental and theoretical points of view, the underlying luminescence mechanisms in this phosphor still lack a profound understanding. By the evaluation of thermoluminescence as a function of the charging wavelength, we probe the defect levels allowing energy storage. Multiple trap depths and trapping routes are found, suggesting predominantly local trapping close to Mn2+ impurities. We demonstrate that this phosphor shows mechanoluminescence which is unexpectedly stable at high temperature (up to 200 degrees C), allowing pressure sensing in a wide temperature range. Next, we correlate the spectroscopic results with a theoretical study of the electronic structure and stability of the Mn defects in CaZnOS. DFT calculations at the PBE+U level indicate that Mn impurities are incorporated on the Zn site in a divalent charge state, which is confirmed by X-ray absorption spectroscopy (XAS). Ligand-to-metal charge transfer (LMCT) is predicted from the location of the Mn impurity levels, obtained from the calculated defect formation energies. This LMCT proves to be a very efficient pathway for energy storage. The excited state landscape of the Mn2+ 3d(5) electron configuration is assessed through the spin-correlated crystal field and a good correspondence with the emission and excitation spectra is found. In conclusion, studying phosphors at both a singleparticle level (i.e. via calculation of defect formation energies) and a many-particle level (i.e. by accurately localizing the excited states) is necessary to obtain a complete picture of luminescent defects, as demonstrated in the case of CaZnOS: Mn2+

    Persistent luminescence in Eu2+-doped compounds : a review

    Get PDF
    In 1996, Matsuzawa et al. reported on the extremely long-lasting afterglow of SrAl2O4:Eu2+ codoped with Dy3+ ions, which was more than 10-times brighter than the previously widely used ZnS:Cu,Co. Since then, research for stable and efficient persistent phosphors has continuously gained popularity. However, even today - almost 15 years after the discovery of SrAl2O4:Eu2+, Dy3+ - the number of persistent luminescent materials is still relatively low. Furthermore, the mechanism behind this phenomenon is still unclear. Although most authors agree on the general features, such as the existence of long-lived trap levels, many details are still shrouded in mystery. In this review, we present an overview of the important classes of known persistent luminescent materials based on Eu2+-emission and how they were prepared, and we take a closer look at the models and mechanisms that have been suggested to explain bright afterglow in various compounds

    High temperature annealing of micrometric Zn2SiO4:Mn phosphor powders in fluidized bed

    Get PDF
    Micrometric Zn1.8Mn0.2SiO4 phosphor powders prepared by spray pyrolysis have been annealed between 900 and 1200°C under ambient air atmosphere to exalt their luminescence properties. Two original gas-solid fluidization processes have been tested in order to limit sintering phenomena, and the post-treated products have been compared with those annealed using a conventional process in crucible. The crystallinity, the size distribution, the outer morphology and the luminescence properties of powders before and after treatment have been analysed. Massive sintering phenomena occur in crucible from 1000°C, whereas the original granulometry and spherical morphology are preserved till 1100°C in fluidized bed. The luminescence efficiencies are comparable for the three processes and maximal after annealing at 1200°C. It has been established that residual ZnO and manganese ions at oxidation state higher than 2, still present after treatment at 1100°C, are detrimental to good luminescence efficiency. Both disappear from samples post-treated at 1200°C

    A review of mechanoluminescence in inorganic solids : compounds, mechanisms, models and applications

    Get PDF
    Mechanoluminescence (ML) is the non-thermal emission of light as a response to mechanical stimuli on a solid material. While this phenomenon has been observed for a long time when breaking certain materials, it is now being extensively explored, especially since the discovery of non-destructive ML upon elastic deformation. A great number of materials have already been identified as mechanoluminescent, but novel ones with colour tunability and improved sensitivity are still urgently needed. The physical origin of the phenomenon, which mainly involves the release of trapped carriers at defects with the help of stress, still remains unclear. This in turn hinders a deeper research, either theoretically or application oriented. In this review paper, we have tabulated the known ML compounds according to their structure prototypes based on the connectivity of anion polyhedra, highlighting structural features, such as framework distortion, layered structure, elastic anisotropy and microstructures, which are very relevant to the ML process. We then review the various proposed mechanisms and corresponding mathematical models. We comment on their contribution to a clearer understanding of the ML phenomenon and on the derived guidelines for improving properties of ML phosphors. Proven and potential applications of ML in various fields, such as stress field sensing, light sources, and sensing electric (magnetic) fields, are summarized. Finally, we point out the challenges and future directions in this active and emerging field of luminescence research
    corecore