5,286 research outputs found

    Les espèces actives de l’oxygène : le yin et le yang de la mitochondrie

    Get PDF
    Il existe de nombreuses sources d’espèces actives de l’oxygène (EAO) dans la cellule ; malgré l’importance de chacune d’entre elles, la mitochondrie a été choisie comme sujet central de cet article en raison de son rôle primordial dans la bio-énergétique et du fait qu’elle constitue le site majeur de la production cellulaire d’EAO, 80 % de l’anion superoxyde provenant de la chaîne respiratoire. Cette production est indissociable du processus respiratoire et fortement modulée par les conditions environnementales : elle varie notamment selon l’intensité du métabolisme énergétique ou de la pression en oxygène, permettant aux cellules de s’adapter à ces changements environnementaux en activant des voies spécifiques de signalisation. Lorsque cette production d’EAO devient chronique, elle induit des effets délétères, le stress oxydant mitochondrial étant impliqué aussi bien en physiopathologie qu’au cours du vieillissement.Literature on reactive oxygen species (ROS) effects on cell biology and physiopathology is huge and appears to be controversial. This could be explained by the fact that very few studies take into account the real subcellular source of ROS production, their chemical nature and the intensity of their production. In spite of the importance of the other sites of ROS production in the cell, we decided to focus on mitochondrial ROS. Besides their key role in bioenergetics and ATP synthesis, mitochondria are one of the main sites of ROS generation within the cell. 80 % of intracellular superoxide anion is provided by the mitochondrial respiratory chain. Mitochondrial ROS production is closely associated with activity of the respiratory chain and is modulated by environmental factors which can induce constraints on respiratory chain components. Nutrient availability as well as oxygen pressure can both modulate mitochondrial ROS production. When moderately produced, ROS specifically regulate intracellular signalling pathways by reversible oxidation of proteins such as transcription factors or proteins kinases. In this way, they can trigger cell adaptation to environmental changes as modifications of energetic metabolism or hypoxia. Indeed, we demonstrated that mitochondrial ROS act as key elements in the control of white adipose tissue development by specific up-regulation of the anti-adipogenic transcription factor CHOP-10/GADD153. However, when they are produced at high level and in a chronic manner, mitochondrial ROS can also have deleterious effects by massive and irreversible oxidation of their principals targets i.e. lipids, DNA and proteins. In these conditions, mitochondrial ROS are involved in aging process and in pathological situations as metabolic disease

    Relations structure/fonction de la dynamine mitochondriale Msp1 : étude de ses relations avec la membrane interne et de ses activités biochimiques

    Get PDF
    La dynamique mitochondriale est définie comme un équilibre entre des forces antagonistes de fusion et de fission des membranes qui modulent la morphologie des mitochondries et jouent un rôle majeur dans la régulation des fonctions de l'organelle. Notre équipe a identifié l'un des acteurs de cette dynamique, une GTPase de la famille des dynamines appelée Msp1 chez la levure S. pombe et OPA1 chez l'homme. Le dysfonctionnement d'OPA1 est responsable de l'atrophie optique dominante de type 1. Cette dynamine agit sur la fusion des mitochondries, la structure des crêtes et le maintien de l'ADN mitochondrial (ADNmt). Elle module aussi la respiration et la synthèse d'ATP, avec des conséquences sur la viabilité cellulaire et sur l'apoptose chez les eucaryotes supérieurs. Au vue de cette pléiotropie, notre hypothèse est que la dynamine OPA1/Msp1 intervient dans l'organisation de la membrane interne des mitochondries. Mon travail de thèse a été initié pour définir les activités biochimiques de Msp1 à l'origine de ses effets biologiques, et les bases structurales sous-jacentes. Le rôle de deux domaines hydrophobes (TM1 et TM2) dans l'association aux membranes et les fonctions de Msp1 a été analysé in vivo dans la levure S. pombe. Les propriétés biochimiques de Msp1 dans l'organisation des membranes ont été étudiées in vitro après purification et reconstitution dans des liposomes de composition phospholipidique similaire à celle de la membrane interne. Nos études in vivo ont montré que TM1 et TM2, et un troisième site d'interaction membranaire (SIM3), ont des rôles distincts dans l'association de Msp1 aux membranes, et dans la fusion des mitochondries et le maintien de l'ADNmt. Nous suggérons que l'organisation locale de la membrane interne est modulée par les proportions relatives des sites (TM1 + TM2) / SIM3, reflet du rapport entre une forme longue, l-Msp1, et une forme courte, s-Msp1, qui co-existent naturellement chez la levure et diffèrent par la présence de TM1 et TM2 dans l-Msp1 uniquement, SIM3 étant commun aux deux isoformes. Dans notre système in vitro, l'association de l-Msp1 et s-Msp1 aux liposomes et leur topologie reproduisent la situation observée dans les mitochondries. Nous avons montré que s-Msp1 a une activité GTPase caractéristique des dynamines avec une faible affinité apparente pour le GTP et une forte activité catalytique et qu'un motif coiled-coil C-terminal est nécessaire au développement de cette activité. Grâce à ce système, nous mettons en évidence pour la première fois que Msp1 favorise l'hémifusion des liposomes et a donc un rôle direct dans la fusion membranaire. L'hémifusion est induite par les deux isoformes l Msp1 et s-Msp1 et est indépendante de l'activité GTPase et de l'oligomérisation de la dynamine. SIM3, qui est commun à l-Msp1 et s-Msp1, pourrait donc contenir les éléments structuraux requis pour l'hémifusion. L'ensemble de ce travail nous permet de proposer un modèle dans lequel Msp1 agirait comme organisateur de la membrane et comme commutateur moléculaire. A chacun de ses sites d'action, la dynamine entrerait dans des complexes multi-protéiques distincts dont la composition dépendrait des proportions relatives de chacune des isoformes, donc du rapport (TM1+TM2) / SIM3. La modification de ce rapport par l'hydrolyse du GTP modulerait l'organisation locale de la membrane et donc la composition et l'activité de ces complexes.Mitochondrial dynamics is defined as an equilibrium between antagonistic fusion and fission forces that control mitochondrial morphology and play a major role in the regulation of mitochondrial functions. Our group identified one actor of mitochondrial dynamics, a GTPase of the dynamins' family called Msp1 in the S.pombe yeast and OPA1 in humans. OPA1 dysfunction leads to type 1 dominant optic atrophy. This dynamin acts in mitochondrial fusion and is involved in the maintenance of cristae structure and of mitochondrial DNA (mtDNA). It also controls respiration and ATP synthesis with impacts on cellular viability and apoptosis in higher eukaryotes. Given this large spectrum of action, our hypothesis is that Msp1/OPA1 acts on the organization of the mitochondrial inner membrane. My PhD thesis was initiated to define the biochemical activities of Msp1 responsible for its biological effects, and the underlying structural basis. The role of two hydrophobic domains (TM1 and TM2) in Msp1 membrane association and functions was analysed in vivo in S. pombe cells. The biochemical properties of Msp1 in membranes organization were studied in vitro after purification and reconstitution into liposomes of phospholipd composition similar to that of the mitochondrial inner membrane. Our in vivo studies showed that TM1 and TM2, and a third site of membrane interaction (SIM3), play distinct roles in Msp1 membrane association and in mitochondrial fusion and mtDNA maintenance. We suggest that the local organisation of the inner membrane varies with the relative proportions of the domains (TM1+TM2)/SIM3 reflecting the ratio between a long, l-Msp1, and a short, s-Msp1, isoform that naturally occur in S. pombe and differ by the presence of TM1 and TM2 in l-Msp1 only, SIM 3 being common to both. In our in vitro system, the association and topology of l-Msp1 and s-Msp1 onto liposomes are similar to that observed in mitochondria. We showed that s-Msp1 has a GTPase activity similar to that of dynamins, with a low affinity for GTP and a high catalytic activity, and that a C-terminal coiled-coil motif is essential for this activity. With this system we show for the first time that Msp1 induces hemifusion of liposomes, indicating a direct role in membrane fusion. Hemifusion was induced by both l-Msp1 and s-Msp1 isoforms and was independent from GTPase activity and from self-assembly. SIM3, which is common to l-Msp1 and s-Msp1, may thus contain the structural requirements for hemifusion. Altogether, this work allows us to propose a model in which Msp1 could act as a membrane organizer and as a molecular switch. At each of its sites of action, the dynamin could enter in distinct multi-protein complexes, the composition of which could depend on the relative proportions of each Msp1 isoforms, i.e. of the (TM1+TM2)/SIM3 ratio. Modification of this ratio by GTP hydrolysis would modulate local membrane organisation, and hence the composition and activity of these complexes

    Activité dominante négative des protéines p53 mutées

    Get PDF
    La protéine p53 dispose d’une fonction activatrice de l’expression de nombreux gènes cibles. Le rôle de facteur de transcription joué par la protéine p53 nécessite la formation d’une structure homotétramérique. Les résultats de certaines expérimentations montrent que les monomères p53 mutés ont la capacité de se lier à des monomères p53 sauvages pour constituer des complexes hétérotétramériques. La présence de monomères p53 mutés au sein de ces complexes hétérotétramériques peut avoir pour conséquence immédiate une inactivation des monomères sauvages. Cette capacité de liaison et d’inactivation des p53 mutées à l’égard des p53 sauvages est qualifiée d’« effet dominant négatif ». Plusieurs facteurs enrôlés dans cette activité dominante négative ont été identifiés. La compréhension des fonctions moléculaires complexes qui régissent cette activité constitue un des aspects importants qui permettrait de mieux discerner les mécanismes biologiques en jeu dans la cancérogenèse. Le but de cet article est de mettre en lumière des aspects jusqu’à présent occultés de l’activité dominante négative des protéines p53 mutées. De plus, nous allons souligner comment cette activité contribue à la cancérogenèse induite par les rayons ultraviolets.Tumor suppressor gene inactivation as proposed by the Knudson model implies a sequential inactivation of two alleles of a gene. For example, the first allele is inactivated by a missense mutation, and the second one is inactivated by a deletion or insertion. The alteration of the p53 tumor suppressor gene is far to correspond only to this model. In the great majority of cancers, the mutated allele of p53 coexists with the normal allele. It is well known that the transcriptional activity is one of the most important functions of p53. The p53 protein is active as a tetramer (this complex activates the expression of targeted genes by binding to its consensus DNA sequence called the p53 response element). Experimental evidence shows that wild-type p53 interacts with mutant proteins to form heterotetramers. In association with wild-type proteins, mutant proteins drive the wild-type subunits into a mutant conformation. This association leads to a loss of trans-activating function. The capacity of mutant subunits to form heterotetramers with wild-type subunits and to commit them into a mutant conformation is called « dominant negative effect ». Many p53 mutant proteins possess this dominant negative activity. Recently, several factors, which are implicated in the control of the dominant negative activity of p53 mutants, have been identified. The elucidation of these complex molecular functions, which are implicated in the dominant negative activity of the p53 mutated protein represents an important aspect in the comprehension of the biological mechanisms involved in carcinogenesis

    Stress oxydant et vieillissement

    Get PDF
    Le vieillissement est un processus qui continue à fasciner les biologistes de tous horizons, qu’ils s’intéressent à l’évolution, à la génétique, à la signalisation ou à la toxicité de l’environnement. De nombreuses théories, parfois contradictoires, sont proposées pour rendre compte des mécanismes du vieillissement, perçus par certains comme le résultat d’un programme inéluctable, par d’autres comme le fruit d’une suite d’agressions qui pourraient être évitées ou réparées. L’hypothèse « radicalaire » du vieillissement met au premier plan l’accumulation d’agressions oxydantes provoquées par les radicaux libres provenant principalement du métabolisme de l’oxygène et de l’azote. Cette hypothèse, proposée il y a une cinquantaine d’années, demeure l’une des plus populaires chez les spécialistes, même si certaines de ses prédictions n’ont pas été vérifiées de manière satisfaisante. Cet article présente les fondements de cette hypothèse, ses relations avec les autres théories, mitochondriales, métaboliques et génétiques, et la confronte à la réalité têtue des observations expérimentales pour proposer une vision plus intégrée des relations entre vieillissement et stress cellulaires.A number of theories have attempted to account for ageing processes in various species. Following the « rate of living » theory of Pearl, Harman suggested fifty years ago that the accumulation of oxidants could explain the alteration of physical and cognitive functions with ageing. Oxygen metabolism leads to reactive species, including free radicals, which tend to oxydize surrounding molecules such as DNA, proteins and lipids. As a consequence various functions of cells and tissues can be altered, leading to DNA instability, protein denaturation and accumulation of lipid byproducts. Oxidative stress is an adaptive process which is triggered upon oxidant accumulation and which comprises the induction of protective and survival functions. Experimental evidence suggests that the ageing organism is in a state of oxidative stress, which supports the free radical theory. A number of other theories have been proposed ; some of these are actually compatible with the free radical theory. Caloric restriction is among the best models to increase life span in many species. While the relationship between caloric restriction and corrected metabolic rate is controversial, the decrease in ROS production by mitochondria appears to be experimentally supported. The ROS and mitochondrial theories of ageing appear to be compatible. Genetic models of increased life span, particularly those affecting the Foxo pathway, are usually accompanied by an increased resistance to oxidative insult. The free radical theory is not consistent with programmed senescence theories involving the cell division dependent decrease in telomere length ; however, oxidants are known to alter telomere structure. An appealing view of the role of oxidative stress in ageing is the trade-off principle which states that a phenotypic trait can be evolutionarily conserved because of its positive effects on development, growth or fertility, and despite its negative effect on somatic functions and ageing. It is likely that most cellular stresses which comprise adaptive and toxic functions follow such a rule

    Chaperons moléculaires et repliement des protéines : L'exemple de certaines protéines de choc thermique

    Get PDF
    Des conditions ou agents déstabilisant l'environnement cellulaire altèrent souvent le repliement des protéines. Suivant son intensité, ce phénomène peut induire une agrégation irréversible des protéines et entraîner la mort des cellules. Un mécanisme cellulaire de défense contre cette atteinte à l'intégrité des protéines existe, qui est conservé au cours de l'évolution. En effet, la cellule réagit aux stress altérant le repliement des protéines en activant l'expression d'un petit nombre de gènes codant pour des protéines spécialisées, les Hsp (heat shock proteins). Certaines de ces protéines ont des activités de chaperons moléculaires aidant au repliement des polypeptides ayant une structure altérée. Mais la cellule contient également des homologues de Hsp constitutifs, non induits par un stress, qui participent au contrôle de qualité des protéines. Ces Hsp constitutives sont impliquées dans le repliement des protéines après leur synthèse, dans l'assemblage de structures multiprotéiques dans le réticulum endoplasmique, dans le dépliement des polypeptides lors de leur passage à travers les membranes ou dans le masquage de certaines mutations altérant le repliement des protéines. Les pathologies neurodégénératives et cancéreuses sont données en exemple pour souligner le fait qu'une concentration élevée en Hsp peut, selon la maladie concernée, être bénéfique ou délétère pour la cellule.Exposure to different conditions or agents that destabilize cell homeostasis often alters protein folding. Depending on stress intensity irreversible protein aggregation and cell death can occur. Cells have developed a conserved defense mechanism aimed at reducing the deleterious effects induced by protein folding alteration. This mechanism is characterized by the expression of a small number of genes encoding specific proteins, named Hsps. Several of these proteins act as molecular chaperones through their ability to refold polypeptides with an altered conformation. Moreover, constitutive Hsps homologues have been characterized that participate in the folding of newly made polypeptides, in the assembly of protein complexes in the endoplasmic reticulum, in the translocation of polypeptides through membranes or in masking mutations that alter protein folding. Neurodegeneratives and cancereous diseases are discussed as examples where high levels of Hsp expression can be either beneficial or deleterious to the cells

    Hypoxia-activated genes from early placenta are elevated in preeclampsia, but not in Intra-Uterine Growth Retardation.

    Get PDF
    BACKGROUND: As a first step to explore the possible relationships existing between the effects of low oxygen pressure in the first trimester placenta and placental pathologies developing from mid-gestation, two subtracted libraries totaling 2304 cDNA clones were constructed. For achieving this, two reciprocal suppressive/subtractive hybridization procedures (SSH) were applied to early (11 weeks) human placental villi after incubation either in normoxic or in hypoxic conditions. The clones from both libraries (1440 hypoxia-specific and 864 normoxia-specific) were spotted on nylon macroarrays. Complex cDNAs probes prepared from placental villi (either from early pregnancy, after hypoxic or normoxic culture conditions, or near term for controls or pathological placentas) were hybridized to the membranes. RESULTS: Three hundred and fifty nine clones presenting a hybridization signal above the background were sequenced and shown to correspond to 276 different genes. Nine of these genes are mitochondrial, while 267 are nuclear. Specific expression profiles characteristic of preeclampsia (PE) could be identified, as well as profiles specific of Intra-Uterine Growth Retardation (IUGR). Focusing on the chromosomal distribution of the fraction of genes that responded in at least one hybridization experiment, we could observe a highly significant chromosomal clustering of 54 genes into 8 chromosomal regions, four of which containing imprinted genes. Comparative mapping data indicate that these imprinted clusters are maintained in synteny in mice, and apparently in cattle and pigs, suggesting that the maintenance of such syntenies is requested for achieving a normal placental physiology in eutherian mammals. CONCLUSION: We could demonstrate that genes induced in PE were also genes highly expressed under hypoxic conditions (P = 5 x 10(-5)), which was not the case for isolated IUGR. Highly expressed placental genes may be in syntenies conserved interspecifically, suggesting that the maintenance of such clusters is requested for achieving a normal placental physiology in eutherian mammals

    Transformations énergétiques en biochimie

    Full text link
    I - Energie interne II - Entropie III - Energie libre IV - Energie libre et concentration V - Réactions exergoniques et réactions endergoniques VI L'adénosine triphosphate: ATP VII - La formation des liaisons phosphates à haute énergie de l'ATP a) glycolyse et fermentation b) le cycle de Krebs c) la phosphorylation oxydative d) le cycle des pentoses e) le cycle glyoxylique f) oxydation des acides gras VIII - Conclusio

    A Central Pathological Mechanism Explaining Diabetic Complications?

    Full text link
    peer reviewedDiabetes mellitus is associated to micro- and macro-vascular lesions responsible for myocardial infarction, nephropathy, retinopathy and polyneuropathy. Four main pathogenic mechanisms have been proposed, all associated with hyperglycaemia: 1) increased flux in the polyol pathway; 2) increased flux in the hexosamine pathway; 3) protein kinase C activation; and 4) increased formation of advanced glycation endproducts. A common mechanism seems to play a central role in the activation of these various pathways. Indeed, an increased production of free radicals by mitochondria induced by hyperglycaemia may be responsible for the observed metabolic disturbances. The present article describes that theory and presents its possible therapeutic implications
    corecore