2 research outputs found

    Reliable Integrated Satellite Terrestrial Communications using MIMO for Mitigation of Microwave Absorption by Earths Oxygen

    Get PDF
    Microwaves are used to communicate with satellite and terrestrial communication networks. But as microwaves pass through the Earth’s atmosphere, the oxygen gas absorbs microwave. In this 5G era, when the whole world is moving towards high data-rates and reliable communications, this absorption affects the data transmission in Integrated Satellite/Terrestrial Communication (ISTC) systems, which leads to degradation of the system performance. The multiple-input-multiple-output (MIMO) technology has become a boon for modern wireless communication systems to achieve the necessities of higher data-rates and communication reliability. The paper analyses the MIMO effect on block error rate (BLER), error vector magnitude (EVM) and throughput performance of the data transmission with different MIMO configurations. The paper establishes that better data-rates as well as reliable data communication is achieved with higher order MIMO configurations. MIMO 8×1 provides 5, 20 and 42.5 times improved performance to BLER; 5.26%, 25% and 81.82% in throughput; and 10.34%, 23.07% and 28% in EVM calculations as comparable to MIMO 4×1, MIMO 2×1 and SISO 1×1, respectively at 15 dB signal-to-noise ratio (SNR). The authors also give a new concept of multi-cellular layers based mobile communication network, useful for future smart cities

    MIMO-OFDM Throughput Performances on MIMO Antenna Configurations Using LTE-Based Testbed with 100 MHz Bandwidth

    No full text
    corecore