390 research outputs found

    Generalized Signal Alignment For MIMO Two-Way X Relay Channels

    Full text link
    We study the degrees of freedom (DoF) of MIMO two-way X relay channels. Previous work studied the case N<2MN < 2M, where NN and MM denote the number of antennas at the relay and each source, respectively, and showed that the maximum DoF of 2N2N is achievable when Nβ‰€βŒŠ8M5βŒ‹N \leq \lfloor\frac{8M}{5}\rfloor by applying signal alignment (SA) for network coding and interference cancelation. This work considers the case N>2MN>2M where the performance is limited by the number of antennas at each source node and conventional SA is not feasible. We propose a \textit{generalized signal alignment} (GSA) based transmission scheme. The key is to let the signals to be exchanged between every source node align in a transformed subspace, rather than the direct subspace, at the relay so as to form network-coded signals. This is realized by jointly designing the precoding matrices at all source nodes and the processing matrix at the relay. Moreover, the aligned subspaces are orthogonal to each other. By applying the GSA, we show that the DoF upper bound 4M4M is achievable when Mβ‰€βŒŠ2N5βŒ‹M \leq \lfloor\frac{2N}{5}\rfloor (MM is even) or Mβ‰€βŒŠ2Nβˆ’15βŒ‹M \leq \lfloor\frac{2N-1}{5}\rfloor (MM is odd). Numerical results also demonstrate that our proposed transmission scheme is feasible and effective.Comment: 6 pages, 6 figures, to appear in IEEE ICC 201

    Secure Beamforming for MIMO Two-Way Communications with an Untrusted Relay

    Full text link
    This paper studies the secure beamforming design in a multiple-antenna three-node system where two source nodes exchange messages with the help of an untrusted relay node. The relay acts as both an essential signal forwarder and a potential eavesdropper. Both two-phase and three-phase two-way relay strategies are considered. Our goal is to jointly optimize the source and relay beamformers for maximizing the secrecy sum rate of the two-way communications. We first derive the optimal relay beamformer structures. Then, iterative algorithms are proposed to find source and relay beamformers jointly based on alternating optimization. Furthermore, we conduct asymptotic analysis on the maximum secrecy sum-rate. Our analysis shows that when all transmit powers approach infinity, the two-phase two-way relay scheme achieves the maximum secrecy sum rate if the source beamformers are designed such that the received signals at the relay align in the same direction. This reveals an important advantage of signal alignment technique in against eavesdropping. It is also shown that if the source powers approach zero the three-phase scheme performs the best while the two-phase scheme is even worse than direct transmission. Simulation results have verified the efficiency of the secure beamforming algorithms as well as the analytical findings.Comment: 10 figures, Submitted to IEEE Transactions on Signal Processin
    • …
    corecore