4 research outputs found

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Air-to-Ground Channel Characterization for Low-Height UAVs in Realistic Network Deployments

    Get PDF
    Due to the decrease in cost, size and weight, \acp{UAV} are becoming more and more popular for general-purpose civil and commercial applications. Provision of communication services to \acp{UAV} both for user data and control messaging by using off-the-shelf terrestrial cellular deployments introduces several technical challenges. In this paper, an approach to the air-to-ground channel characterization for low-height \acp{UAV} based on an extensive measurement campaign is proposed, giving special attention to the comparison of the results when a typical directional antenna for network deployments is used and when a quasi-omnidirectional one is considered. Channel characteristics like path loss, shadow fading, root mean square delay and Doppler frequency spreads and the K-factor are statistically characterized for different suburban scenarios.Comment: 15 pages, accepted in IEEE Transactions on Antennas and Propagatio
    corecore