1,313 research outputs found

    Dynamic Interference Mitigation for Generalized Partially Connected Quasi-static MIMO Interference Channel

    Full text link
    Recent works on MIMO interference channels have shown that interference alignment can significantly increase the achievable degrees of freedom (DoF) of the network. However, most of these works have assumed a fully connected interference graph. In this paper, we investigate how the partial connectivity can be exploited to enhance system performance in MIMO interference networks. We propose a novel interference mitigation scheme which introduces constraints for the signal subspaces of the precoders and decorrelators to mitigate "many" interference nulling constraints at a cost of "little" freedoms in precoder and decorrelator design so as to extend the feasibility region of the interference alignment scheme. Our analysis shows that the proposed algorithm can significantly increase system DoF in symmetric partially connected MIMO interference networks. We also compare the performance of the proposed scheme with various baselines and show via simulations that the proposed algorithms could achieve significant gain in the system performance of randomly connected interference networks.Comment: 30 pages, 10 figures, accepted by IEEE Transaction on Signal Processin

    Precoder design for space-time coded systems over correlated Rayleigh fading channels using convex optimization

    Get PDF
    A class of computationally efficient linear precoders for space-time block coded multiple-input multiple-output wireless systems is derived based on the minimization of the exact symbol error rate (SER) and its upper bound. Both correlations at the transmitter and receiver are assumed to be present, and only statistical channel state information in the form of the transmit and receive correlation matrices is assumed to be available at the transmitter. The convexity of the design based on SER minimization is established and exploited. The advantage of the developed technique is its low complexity. We also find various relationships of the proposed designs to the existing precoding techniques, and derive very simple closed-form precoders for special cases such as two or three receive antennas and constant receive correlation. The numerical simulations illustrate the excellent SER performance of the proposed precoders

    Full Diversity Unitary Precoded Integer-Forcing

    Full text link
    We consider a point-to-point flat-fading MIMO channel with channel state information known both at transmitter and receiver. At the transmitter side, a lattice coding scheme is employed at each antenna to map information symbols to independent lattice codewords drawn from the same codebook. Each lattice codeword is then multiplied by a unitary precoding matrix P{\bf P} and sent through the channel. At the receiver side, an integer-forcing (IF) linear receiver is employed. We denote this scheme as unitary precoded integer-forcing (UPIF). We show that UPIF can achieve full-diversity under a constraint based on the shortest vector of a lattice generated by the precoding matrix P{\bf P}. This constraint and a simpler version of that provide design criteria for two types of full-diversity UPIF. Type I uses a unitary precoder that adapts at each channel realization. Type II uses a unitary precoder, which remains fixed for all channel realizations. We then verify our results by computer simulations in 2Ă—22\times2, and 4Ă—44\times 4 MIMO using different QAM constellations. We finally show that the proposed Type II UPIF outperform the MIMO precoding X-codes at high data rates.Comment: 12 pages, 8 figures, to appear in IEEE-TW
    • …
    corecore