117 research outputs found

    MIMO radar space–time adaptive processing using prolate spheroidal wave functions

    Get PDF
    In the traditional transmitting beamforming radar system, the transmitting antennas send coherent waveforms which form a highly focused beam. In the multiple-input multiple-output (MIMO) radar system, the transmitter sends noncoherent (possibly orthogonal) broad (possibly omnidirectional) waveforms. These waveforms can be extracted at the receiver by a matched filterbank. The extracted signals can be used to obtain more diversity or to improve the spatial resolution for clutter. This paper focuses on space–time adaptive processing (STAP) for MIMO radar systems which improves the spatial resolution for clutter. With a slight modification, STAP methods developed originally for the single-input multiple-output (SIMO) radar (conventional radar) can also be used in MIMO radar. However, in the MIMO radar, the rank of the jammer-and-clutter subspace becomes very large, especially the jammer subspace. It affects both the complexity and the convergence of the STAP algorithm. In this paper, the clutter space and its rank in the MIMO radar are explored. By using the geometry of the problem rather than data, the clutter subspace can be represented using prolate spheroidal wave functions (PSWF). A new STAP algorithm is also proposed. It computes the clutter space using the PSWF and utilizes the block-diagonal property of the jammer covariance matrix. Because of fully utilizing the geometry and the structure of the covariance matrix, the method has very good SINR performance and low computational complexity

    Beamforming issues in modern MIMO Radars with Doppler

    Get PDF
    In traditional beamforming radar systems, the transmitting antennas send coherent waveforms which form a highly focused beam. In the MIMO radar system, the transmitter sends noncoherent (possibly orthogonal) broad (possibly omni-directional) waveforms. These waveforms can be extracted by a matched filterbank at the receiver. The extracted signals can be used to obtain more diversity or improve the clutter resolution. This paper focuses on space-time adaptive processing (STAP) for MlMO radar systems which improves the clutter resolution. The size of the MIMO STAP steering vector can be much larger than the traditional SIMO STAP steering vector because of the extra dimension. An accurate estimation of clutter rank for the subspace method is developed, and is a generalization of Brennan's rule to the MIMO radar case. A data independent method for estimating the clutter subspace is also described

    A Subspace Method for MIMO Radar Space-Time Adaptive Processing

    Get PDF
    In the traditional transmitting beamforming radar system, the transmitting antennas send coherent waveforms which form a highly focused beam. In the MIMO radar system, the transmitter sends noncoherent (possibly orthogonal) broad (possibly omnidirectional) waveforms. These waveforms can be extracted by a matched interbank. The extracted signals can be used to obtain more diversity or improve the clutter resolution. In this paper, we focus on space-time adaptive processing (STAP) for MIMO radar systems which improves the clutter resolution. With a slight modification, STAP methods for the SIMO radar case can also be used in MIMO radar. However, in the MIMO radar, the rank of the jammer-and-clutter subspace becomes very large, especially the jammer subspace. It affects both the complexity and the convergence of the STAP. In this paper, a new subspace method is proposed. It computes the clutter subspace using the geometry of the problem rather than data and utilizes the block diagonal property of the jammer covariance matrix. Because of fully utilizing the geometry and the structure of the covariance matrix, the method is very effective for STAP in MIMO radar

    Properties of the MIMO radar ambiguity function

    Get PDF
    MIMO (multiple-input multiple-output) radar is an emerging technology which has drawn considerable attention. Unlike the traditional SIMO (single-input multiple-output) radar, which transmits scaled versions of a single waveform in the antenna elements, the MIMO radar transmits independent waveforms in each of the antenna elements. It has been shown that MIMO radar systems have many advantages such as high spatial resolution, improved parameter identifiability, and enhanced flexibility for transmit beampattern design. In the traditional SIMO radar, the range and Doppler resolutions can be characterized by the radar ambiguity function. It is a major tool for studying and analyzing radar signals. Recently, the ambiguity function has been extended to the MIMO radar case. In this paper, some mathematical properties of the MIMO radar ambiguity function are derived. These properties provide insights into the MIMO radar waveform design

    Compressive Sensing for MIMO Radar

    Full text link
    Multiple-input multiple-output (MIMO) radar systems have been shown to achieve superior resolution as compared to traditional radar systems with the same number of transmit and receive antennas. This paper considers a distributed MIMO radar scenario, in which each transmit element is a node in a wireless network, and investigates the use of compressive sampling for direction-of-arrival (DOA) estimation. According to the theory of compressive sampling, a signal that is sparse in some domain can be recovered based on far fewer samples than required by the Nyquist sampling theorem. The DOA of targets form a sparse vector in the angle space, and therefore, compressive sampling can be applied for DOA estimation. The proposed approach achieves the superior resolution of MIMO radar with far fewer samples than other approaches. This is particularly useful in a distributed scenario, in which the results at each receive node need to be transmitted to a fusion center for further processing

    Knowledge-Aided STAP Using Low Rank and Geometry Properties

    Full text link
    This paper presents knowledge-aided space-time adaptive processing (KA-STAP) algorithms that exploit the low-rank dominant clutter and the array geometry properties (LRGP) for airborne radar applications. The core idea is to exploit the fact that the clutter subspace is only determined by the space-time steering vectors, {red}{where the Gram-Schmidt orthogonalization approach is employed to compute the clutter subspace. Specifically, for a side-looking uniformly spaced linear array, the} algorithm firstly selects a group of linearly independent space-time steering vectors using LRGP that can represent the clutter subspace. By performing the Gram-Schmidt orthogonalization procedure, the orthogonal bases of the clutter subspace are obtained, followed by two approaches to compute the STAP filter weights. To overcome the performance degradation caused by the non-ideal effects, a KA-STAP algorithm that combines the covariance matrix taper (CMT) is proposed. For practical applications, a reduced-dimension version of the proposed KA-STAP algorithm is also developed. The simulation results illustrate the effectiveness of our proposed algorithms, and show that the proposed algorithms converge rapidly and provide a SINR improvement over existing methods when using a very small number of snapshots.Comment: 16 figures, 12 pages. IEEE Transactions on Aerospace and Electronic Systems, 201

    Overlapped-MIMO Radar Waveform Design for Coexistence With Communication Systems

    Full text link
    This paper explores an overlapped-multiple-input multiple-output (MIMO) antenna architecture and a spectrum sharing algorithm via null space projection (NSP) for radar-communications coexistence. In the overlapped-MIMO architecture, the transmit array of a collocated MIMO radar is partitioned into a number of subarrays that are allowed to overlap. Each of the antenna elements in these subarrays have signals orthogonal to each other and to the elements of the other subarrays. The proposed architecture not only improves sidelobe suppression to reduce interference to communications system, but also enjoys the advantages of MIMO radar without sacrificing the main desirable characteristics. The radar-centric spectrum sharing algorithm then projects the radar signal onto the null space of the communications system's interference channel, which helps to avoid interference from the radar. Numerical results are presented which show the performance of the proposed waveform design algorithm in terms of overall beampattern and sidelobe levels of the radar waveform and finally shows a comparison of the proposed system with existing collocated MIMO radar architectures.Comment: accepted at IEEE WCN
    • …
    corecore