35,832 research outputs found

    The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis

    Get PDF
    The study of cell division control within developing tissues is central to understanding the processes of pattern formation. The floral meristem of angiosperms gives rise to floral organs in a particular number and pattern. Despite its critical role, little is known about how cell division is controlled in the floral meristem, and few genes involved have been identified. We describe the phenotypic effects of mutations in WIGGUM, a gene required for control of cell proliferation in the floral and apical meristem of Arabidopsis thaliana. wiggum flowers contain more organs, especially sepals and petals, than found in wild-type flowers. This organ number phenotype correlates with specific size changes in the early floral meristem, preceding organ initiation. Genetic studies suggest that WIGGUM acts on a similar process but in a separate pathway than the CLAVATA1 and CLAVATA3 genes in meristem size regulation, and reveal interactions with other genes affecting meristem structure and identity. Analysis of double mutant phenotypes also reveals a role for WIGGUM in apical meristem function. We propose that WIGGUM plays a role in restricting cell division relative to cellular differentiation in specific regions of the apical and floral meristems

    The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis

    Get PDF
    The CLAVATA (CLV1 and CLV3) and SHOOT MERISTEMLESS (STM) genes specifically regulate shoot meristem development in Arabidopsis. CLV and STH appear to have opposite functions: c1v1 and Clv3 mutants accumulate excess undifferentiated cells in the shoot and floral meristem, while stm mutants fail to form the undifferentiated cells of the shoot meristem during embryonic development. We have identified a weak allele of stm (stm-2) that reveals STM is not only required for the establish- ment of the shoot meristem, but is also required for the continued maintenance of undifferentiated cells in the shoot meristem and for proper proliferation of cells in the floral meristem. We have found evidence of genetic interactions between the CLV and STM loci. clv1 and c1v3 mutations partially suppressed the stm-1 and stm-2 phenotypes, and were capable of suppression in a dominant fashion. clv stm double mutants and plants homozygous for stm but heterozygous for clv, while still lacking an embryonic shoot meristem, exhibited greatly enhanced postembryonic shoot and floral meristem development. Although stm phenotypes are recessive, stm mutations dominantly suppressed clv homozygous and heterozygous phenotypes. These results indicate that the stm phenotype is sensitive to the levels of CLV activity, while the clv phenotype is sensitive to the level of STM activity. We propose that these genes play related but opposing roles in the regulation of cell division and/or cell differentiation in shoot and floral meristems

    Characterisation of inflorescence development in Zea mays with four developmental mutants : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biological Science at Massey University, Palmerston North, New Zealand

    Get PDF
    The genetic control of inflorescence development has been studied in great detail in the model dicotyledonous plants Arabidopsis thaliana and Antirrhinum majus. In contrast, little is known about the genetic regulation in monocotyledonous species. Using maize (Zea mays) as a model system, the phenotypes were documented for the branched silkless1 (bd1) and ramosa (ra1, ra2, and ra3) inflorescence mutants that are characterised by abnormally branched ears. A comparison of the adult morphology and developing inflorescences using scanning electron microscopy in mutant and normal maize reveals that there are at least five reproductive meristems that can be identified in maize: the inflorescence meristem, the branch meristem, the spikelet pair meristem, the spikelet meristem, and the floret meristem. The abnormal branching in bd1 and the three-ramosa mutations is the result of the failure to determine the fate of specific types of reproductive meristems in both tassels and ears. Both RA1 and RA3 are required for the determination of spikelet pair development in branch primordia. RA2 is necessary for determinate growth in spikelet pair meristems. BD1 is required determinate growth of spikelet meristems by specifying a determinate floral meristem identity. The classification of the different types of reproductive meristems and the genes that regulate their development is essential to understanding the genetic programs that underlie inflorescence morphogenesis in maize and other Gramineae

    CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1

    Get PDF
    We have previously described the phenotype of Arabidopsis thaliana plants with mutations at the CLAVATA1 (CLV1) locus (Clark, S. E., Running, M. P. and Meyerowitz, E. M. (1993) Development 119, 397-418). Our investigations demonstrated that clv1 plants develop enlarged vegetative and inflorescence apical meristems, and enlarged and indeterminate floral meristems. Here, we present an analysis of mutations at a separate locus, CLAVATA3(CLV3), that disrupt meristem development in a manner similar to clv1mutations. clv3 plants develop enlarged apical meristems as early as the mature embryo stage. clv3 floral meristems are also enlarged compared with wild type, and maintain a proliferating meristem throughout flower development. clv3 root meristems are unaffected, indicating that CLV3 is a specific regulator of shoot and floral meristem development. We demonstrate that the strong clv3-2 mutant is largely epistatic to clv1 mutants, and that the semi-dominance of clv1 alleles is enhanced by double heterozygosity with clv3 alleles, suggesting that these genes work in the same pathway to control meristem development. We propose that CLV1 and CLV3 are required to promote the differentiation of cells at the shoot and floral meristem

    Pattern formation during de novo assembly of the Arabidopsis shoot meristem

    Get PDF
    Most multicellular organisms have a capacity to regenerate tissue after wounding. Few, however, have the ability to regenerate an entire new body from adult tissue. Induction of new shoot meristems from cultured root explants is a widely used, but poorly understood, process in which apical plant tissues are regenerated from adult somatic tissue through the de novo formation of shoot meristems. We characterize early patterning during de novo development of the Arabidopsis shoot meristem using fluorescent reporters of known gene and protein activities required for shoot meristem development and maintenance. We find that a small number of progenitor cells initiate development of new shoot meristems through stereotypical stages of reporter expression and activity of CUP-SHAPED COTYLEDON 2 (CUC2), WUSCHEL (WUS), PIN-FORMED 1 (PIN1), SHOOT-MERISTEMLESS (STM), FILAMENTOUS FLOWER (FIL, also known as AFO), REVOLUTA (REV), ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) and CLAVATA 3 (CLV3). Furthermore, we demonstrate a functional requirement for WUS activity during de novo shoot meristem initiation. We propose that de novo shoot meristem induction is an easily accessible system for the study of patterning and self-organization in the well-studied model organism Arabidopsis

    CLAVATA1, a regulator of meristem and flower development in Arabidopsis

    Get PDF
    We have investigated the effects on plant development of mutations in the Arabidopsis thaliana CLAVATA1 gene. In clavata1 plants, vegetative, inflorescence and floral meristems are all enlarged relative to wild type. The apical meristem can fasciate in the more severe mutant alleles, and this fasciation can occur prior to the transition to flowering. Flowers of clavata1 plants can have increased numbers of organs in all four whorls, and can also have additional whorls not present in wild-type flowers. Double mutant combinations of clavata1 with agamous, apetala2, apetala3 and pistillata indicate that CLAVATA1 controls the underlying floral meristem structure upon which these homeotic genes act. Double mutant combinations of clavata1 with apetala1 and leafy indicate CLAVATA1 plays a role in establishing and maintaining floral meristem identity, in addition to its role in controlling meristem size. In support of this, RNA expression patterns of AGAMOUS and APETALA1 are altered in clavata1 flowers

    Genetic Analysis of Axillary Meristem Development in Arabidopsis: Roles of MIR164, CUC1, CUC2, CUC3 and LAS, and identification of novel regulators.

    Get PDF
    Aerial architecture and reproductive success in higher plants is determined by the formation of secondary axes of growth which are formed by axillary meristems initiated post-embryonically in the axils of leaves. Among the genetic modulators of axillary meristem fate in Arabidopsis is LATERAL SUPPRESSOR, a putative transcription factor belonging to the GRAS family, which specifically regulates the initiation of axillary meristems during the vegetative phase of development. The aim of this work was to study the mechanism of LAS function in the meristem and to identify new regulators of axillary meristem initiation in Arabidopsis. To study the spatio-temporal specification of its function, LAS was misexpressed from promoters of meristematic genes possessing adjoining or overlapping expression domains in the SAM. Analysis of STM::LAS, KNAT1::LAS and UFO::LAS transgenic plants in las-4 background revealed partial to complete complementation of the las-4 branching phenotype, but did not lead to the formation of ectopic meristems. These results imply a function for LAS in maintaining the meristematic potential in axillary cells which can later initiate axillary meristems upon activation by other developmental cues. A potential mechanism of LAS function in axillary meristems was investigated by GA spraying experiments and complementation analysis of LAS::GAI and LAS::GAI DELLA transgenic plants in las-4 mutant background. Preliminary results indicate a role for LAS as a regulator of GA signaling in axillary meristems. To identify new regulators of axillary meristem development, two approaches were employed. Firstly, an EMS mutagenesis screen was carried out to identify supperssors of the las-4 max1-1 phenotype. Characterisation of three suppressor of las-4 (sol) candidates, sol2, sol6 and sol7, revealed three novel loci that regulate axillary meristem development. sol2, sol6 and sol7 complemented the branching defect in las-4 max1-1 to different degrees and were found to be non-allelic to each other. Their phenotypes were dependent on the las-4 mutation. Molecular mapping of two of these loci is underway. Secondly, the NAC domain transcription factors CUP-SHAPED COTYLEDON1, CUC2 and CUC3, exhibiting a characteristic expression pattern in the axils of leaf primordia, were investigated for potential roles in the development of axillary meristems. Investigation of loss-of-function mutants of these genes revealed that cuc3-2 is impaired in axillary bud formation, and that the severity of this phenotype is day length dependent. Transcripts of the other two CUC genes, CUC1 and CUC2, are targeted for degradation by miR164. Overexpression of MIR164A or MIR164B in the cuc3-2 mutant caused an almost complete block in axillary bud development. Conversely, plants harbouring miR164-resistant alleles of CUC1 and CUC2 developed accessory buds in rosette and cauline leaf axils, revealing redundant functions of CUC1 and CUC2 in axillary meristem development. Development of accessory buds was also observed in mir164 mutants. Thus, the role of CUC genes and miR164 in regulation of axillary meristem development was unveiled in this study

    Proline affects the size of the root meristematic zone in Arabidopsis

    Get PDF
    We reported previously that root elongation in Arabidopsis is promoted by exogenous proline, raising the possibility that this amino acid may modulate root growth. To evaluate this hypothesis we used a combination of genetic, pharmacological and molecular analyses, and showed that proline specifically affects root growth by modulating the size of the root meristem. The effects of proline on meristem size are parallel to, and independent from, hormonal pathways, and do not involve the expression of genes controlling cell differentiation at the transition zone. On the contrary, proline appears to control cell division in early stages of postembryonic root development, as shown by the expression of the G2/M-specific CYCLINB1;1 (CYCB1;1) gene. The overall data suggest that proline can modulate the size of root meristematic zone in Arabidopsis likely controlling cell division and, in turn, the ratio between cell division and cell differentiation
    corecore