4,932 research outputs found
Differential Hox expression in murine embryonic stem cell models of normal and malignant hematopoiesis
The Hox family are master transcriptional regulators of developmental processes, including hematopoiesis. The Hox regulators, caudal homeobox factors (Cdx1-4), and Meis1, along with several individual Hox proteins, are implicated in stem cell expansion during embryonic development, with gene dosage playing a significant role in the overall function of the integrated Hox network. To investigate the role of this network in normal and aberrant, early hematopoiesis, we employed an in vitro embryonic stem cell differentiation system, which recapitulates mouse developmental hematopoiesis. Expression profiles of Hox, Pbx1, and Meis1 genes were quantified at distinct stages during the hematopoietic differentiation process and compared with the effects of expressing the leukemic oncogene Tel/PDGFR;2. During normal differentiation the Hoxa cluster, Pbx1 and Meis1 predominated, with a marked reduction in the majority of Hox genes (27/39) and Meis1 occurring during hematopoietic commitment. Only the posterior Hoxa cluster genes (a9, a10, a11, and a13) maintained or increased expression at the hematopoietic colony stage. Cdx4, Meis1, and a subset of Hox genes, including a7 and a9, were differentially expressed after short-term oncogenic (Tel/PDGFR;2) induction. Whereas Hoxa4-10, b1, b2, b4, and b9 were upregulated during oncogenic driven myelomonocytic differentiation. Heterodimers between Hoxa7/Hoxa9, Meis1, and Pbx have previously been implicated in regulating target genes involved in hematopoietic stem cell (HSC) expansion and leukemic progression. These results provide direct evidence that transcriptional flux through the Hox network occurs at very early stages during hematopoietic differentiation and validates embryonic stem cell models for gaining insights into the genetic regulation of normal and malignant hematopoiesis
Identification and Analysis of Conserved cis-Regulatory Regions of the MEIS1 Gene
Meis1, a conserved transcription factor of the TALE-homeodomain class, is expressed in a wide variety of tissues during development. Its complex expression pattern is likely to be controlled by an equally complex regulatory landscape. Here we have scanned the Meis1 locus for regulatory elements and found 13 non-coding regions, highly conserved between humans and teleost fishes, that have enhancer activity in stable transgenic zebrafish lines. All these regions are syntenic in most vertebrates. The composite expression of all these enhancer elements recapitulate most of Meis1 expression during early embryogenesis, indicating they comprise a basic set of regulatory elements of the Meis1 gene. Using bioinformatic tools, we identify a number of potential binding sites for transcription factors that are compatible with the regulation of these enhancers. Specifically, HHc2:066650, which is expressed in the developing retina and optic tectum, harbors several predicted Pax6 sites. Biochemical, functional and transgenic assays indicate that pax6 genes directly regulate HHc2:066650 activity.This work was funded through grants BFU2009-07044 (MICINN) and Proyecto de Excelencia CVI 2658 (Junta de Andalucía) to FC and BFU2010-14839 (MICINN), CSD2007-00008 and Proyecto de Excelencia CVI-3488 to JLGS. JLR is a recipient of a JAE-DOC contract from the Spanish National Research Council (CSIC)
A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling
Trib2 pseudokinase is involved in the etiology of a number of cancers including leukaemia, melanoma, ovarian, lung
and liver cancer. Both high and low Trib2 expression levels correlate with different types of cancer. Elevated Trib2
expression has oncogenic properties in both leukaemia and lung cancer dependent on interactions with proteasome
machinery proteins and degradation of transcription factors. Here, we demonstrated that Trib2 deficiency conferred a
growth and survival advantage both at steady state and in stress conditions in leukaemia cells. In response to stress,
wild type leukaemia cells exited the cell cycle and underwent apoptosis. In contrast, Trib2 deficient leukaemia cells
continued to enter mitosis and survive. We showed that Trib2 deficient leukaemia cells had defective MAPK
p38 signalling, which associated with a reduced γ-H2Ax and Chk1 stress signalling response, and continued
proliferation following stress, associated with inefficient activation of cell cycle inhibitors p21, p16 and p19.
Furthermore, Trib2 deficient leukaemia cells were more resistant to chemotherapy than wild type leukaemia cells,
having less apoptosis and continued propagation. Trib2 re-expression or pharmacological activation of p38 in Trib2
deficient leukaemia cells sensitised the cells to chemotherapy-induced apoptosis comparable with wild type
leukaemia cells. Our data provide evidence for a tumour suppressor role of Trib2 in myeloid leukaemia via activation of
p38 stress signalling. This newly identified role indicates that Trib2 may counteract the propagation and chemotherapy
resistance of leukaemia cells
HoxA9 binds and represses the Cebpa +8 kb enhancer
C/EBPα plays a key role in specifying myeloid lineage development. HoxA9 is expressed in myeloid progenitors, with its level diminishing during myeloid maturation, and HOXA9 is over-expressed in a majority of acute myeloid leukemia cases, including those expressing NUP98-HOXD13. The objective of this study was to determine whether HoxA9 directly represses Cebpa gene expression. We find 4-fold increased HoxA9 and 5-fold reduced Cebpa in marrow common myeloid and LSK progenitors from Vav-NUP98-HOXD13 transgenic mice. Conversely, HoxA9 decreases 5-fold while Cebpa increases during granulocytic differentiation of 32Dcl3 myeloid cells. Activation of exogenous HoxA9-ER in 32Dcl3 cells reduces Cebpa mRNA even in the presence of cycloheximide, suggesting direct repression. Cebpa transcription in murine myeloid cells is regulated by a hematopoietic-specific +37 kb enhancer and by a more widely active +8 kb enhancer. ChIP-Seq analysis of primary myeloid progenitor cells expressing exogenous HoxA9 or HoxA9-ER demonstrates that HoxA9 localizes to both the +8 kb and +37 kb Cebpa enhancers. Gel shift analysis demonstrates HoxA9 binding to three consensus sites in the +8 kb enhancer, but no affinity for the single near-consensus site present in the +37 kb enhancer. Activity of a Cebpa +8 kb enhancer/promoter-luciferase reporter in 32Dcl3 or MOLM14 myeloid cells is increased ~2-fold by mutation of its three HOXA9-binding sites, suggesting that endogenous HoxA9 represses +8 kb Cebpa enhancer activity. In contrast, mutation of five C/EBPα-binding sites in the +8 kb enhancer reduces activity 3-fold. Finally, expression of a +37 kb enhancer/promoter-hCD4 transgene reporter is reduced ~2-fold in marrow common myeloid progenitors when the Vav-NUP98-HOXD13 transgene is introduced. Overall, these data support the conclusion that HoxA9 represses Cebpa expression, at least in part via inhibition of its +8 kb enhancer, potentially allowing normal myeloid progenitors to maintain immaturity and contributing to the pathogenesis of acute myeloid leukemia associated with increased HOXA9
Sox9-Meis1 Inactivation Is Required for Adipogenesis, Advancing Pref-1+ to PDGFRα+ Cells.
Adipocytes arise from the commitment and differentiation of adipose precursors in white adipose tissue (WAT). In studying adipogenesis, precursor markers, including Pref-1 and PDGFRα, are used to isolate precursors from stromal vascular fractions of WAT, but the relation among the markers is not known. Here, we used the Pref-1 promoter-rtTA system in mice for labeling Pref-1+ cells and for inducible inactivation of the Pref-1 target Sox9. We show the requirement of Sox9 for the maintenance of Pref-1+ proliferative, early precursors. Upon Sox9 inactivation, these Pref-1+ cells become PDGFRα+ cells that express early adipogenic markers. Thus, we show that Pref-1+ cells precede PDGFRα+ cells in the adipogenic pathway and that Sox9 inactivation is required for WAT growth and expansion. Furthermore, we show that in maintaining early adipose precursors, Sox9 activates Meis1, which prevents adipogenic differentiation. Our study also demonstrates the Pref-1 promoter-rtTA system for inducible gene inactivation in early adipose precursor populations
Recommended from our members
Allele-specific NKX2-5 binding underlies multiple genetic associations with human electrocardiographic traits.
The cardiac transcription factor (TF) gene NKX2-5 has been associated with electrocardiographic (EKG) traits through genome-wide association studies (GWASs), but the extent to which differential binding of NKX2-5 at common regulatory variants contributes to these traits has not yet been studied. We analyzed transcriptomic and epigenomic data from induced pluripotent stem cell-derived cardiomyocytes from seven related individuals, and identified ~2,000 single-nucleotide variants associated with allele-specific effects (ASE-SNVs) on NKX2-5 binding. NKX2-5 ASE-SNVs were enriched for altered TF motifs, for heart-specific expression quantitative trait loci and for EKG GWAS signals. Using fine-mapping combined with epigenomic data from induced pluripotent stem cell-derived cardiomyocytes, we prioritized candidate causal variants for EKG traits, many of which were NKX2-5 ASE-SNVs. Experimentally characterizing two NKX2-5 ASE-SNVs (rs3807989 and rs590041) showed that they modulate the expression of target genes via differential protein binding in cardiac cells, indicating that they are functional variants underlying EKG GWAS signals. Our results show that differential NKX2-5 binding at numerous regulatory variants across the genome contributes to EKG phenotypes
The homeobox gene MEIS1 is methylated in BRAFp.V600E mutated colon tumors
Development of colorectal cancer (CRC) can occur both via gene mutations in tumor suppressor genes and oncogenes, as well as via epigenetic changes, including DNA methylation. Site-specific methylation in CRC regulates expression of tumor-associated genes. Right-sided colon tumors more frequently have BRAFp.V600E mutations and have higher methylation grades when compared to left-sided malignancies. The aim of this study was to identify DNA methylation changes associated with BRAFp.V600E mutation status. We performed methylation profiling of colon tumor DNA, isolated from frozen sections enriched for epithelial cells by macro-dissection, and from paired healthy tissue. Single gene analyses comparing BRAFp.V600E with BRAF wild type revealed MEIS1 as the most significant differentially methylated gene (log2 fold change: 0.89, false discovery rate-adjusted P-value 2.8*10-9). This finding was validated by methylation-specific PCR that was concordant with the microarray data. Additionally, validation in an independent cohort (n=228) showed a significant association between BRAF p.V600E and MEIS1 methylation (OR: 13.0, 95% CI: 5.2 - 33.0, P<0.0001). MEIS1 methylation was associated with decreased MEIS1 gene expression in both patient samples and CRC cell lines. The same was true for gene expression of a truncated form of MEIS1, MEIS1D27, which misses exon 8 and has a proposed tumor suppression function. To trace the origin of MEIS1 promoter methylation, 14 colorectal tumors were flow-sorted. Four out of eight BRAFp.V600E tumor epithelial fractions (50%) showed MEIS1 promoter methylation, as well as three out of eight BRAFp.V600E stromal fractions (38%). Only one out of six BRAF wild type showed MEIS1 promoter methylation in both the epithelial tumor and stromal fractions (17%). In conclusion, BRAFp.V600E colon tumors showed significant MEIS1 promoter methylation, which was associated with decreased MEIS1 gene expression. Copyright
Nuclear Translocation of Extradenticle Requires homothorax, which Encodes an Extradenticle-Related Homeodomain Protein
AbstractWe show that homothorax (hth) is required for the Hox genes to pattern the body of the fruit fly, Drosophila melanogaster. hth is necessary for the nuclear localization of an essential HOX cofactor, Extradenticle (EXD), and encodes a homeodomain protein that shares extensive identity with the product of Meis1, a murine proto-oncogene. MEIS1 is able to rescue hth mutant phenotypes and can induce the cytoplasmic-to-nuclear translocation of EXD in cell culture and Drosophila embryos. Thus, Meis1 is a murine homolog of hth. MEIS1/HTH also specifically binds to EXD with high affinity in vitro. These data suggest a novel and evolutionarily conserved mechanism for regulating HOX activity in which a direct protein–protein interaction between EXD and HTH results in EXD's nuclear translocation
- …
