48,554 research outputs found
MDS matrices over small fields: A proof of the GM-MDS conjecture
An MDS matrix is a matrix whose minors all have full rank. A question arising
in coding theory is what zero patterns can MDS matrices have. There is a
natural combinatorial characterization (called the MDS condition) which is
necessary over any field, as well as sufficient over very large fields by a
probabilistic argument.
Dau et al. (ISIT 2014) conjectured that the MDS condition is sufficient over
small fields as well, where the construction of the matrix is algebraic instead
of probabilistic. This is known as the GM-MDS conjecture. Concretely, if a zero pattern satisfies the MDS condition, then they conjecture that
there exists an MDS matrix with this zero pattern over any field of size
. In recent years, this conjecture was proven in
several special cases. In this work, we resolve the conjecture
Visualizing Random Forest with Self-Organising Map
Random Forest (RF) is a powerful ensemble method for classification and
regression tasks. It consists of decision trees set. Although, a single tree is
well interpretable for human, the ensemble of trees is a black-box model. The
popular technique to look inside the RF model is to visualize a RF proximity
matrix obtained on data samples with Multidimensional Scaling (MDS) method.
Herein, we present a novel method based on Self-Organising Maps (SOM) for
revealing intrinsic relationships in data that lay inside the RF used for
classification tasks. We propose an algorithm to learn the SOM with the
proximity matrix obtained from the RF. The visualization of RF proximity matrix
with MDS and SOM is compared. What is more, the SOM learned with the RF
proximity matrix has better classification accuracy in comparison to SOM
learned with Euclidean distance. Presented approach enables better
understanding of the RF and additionally improves accuracy of the SOM
Block-Diagonal and LT Codes for Distributed Computing With Straggling Servers
We propose two coded schemes for the distributed computing problem of
multiplying a matrix by a set of vectors. The first scheme is based on
partitioning the matrix into submatrices and applying maximum distance
separable (MDS) codes to each submatrix. For this scheme, we prove that up to a
given number of partitions the communication load and the computational delay
(not including the encoding and decoding delay) are identical to those of the
scheme recently proposed by Li et al., based on a single, long MDS code.
However, due to the use of shorter MDS codes, our scheme yields a significantly
lower overall computational delay when the delay incurred by encoding and
decoding is also considered. We further propose a second coded scheme based on
Luby Transform (LT) codes under inactivation decoding. Interestingly, LT codes
may reduce the delay over the partitioned scheme at the expense of an increased
communication load. We also consider distributed computing under a deadline and
show numerically that the proposed schemes outperform other schemes in the
literature, with the LT code-based scheme yielding the best performance for the
scenarios considered.Comment: To appear in IEEE Transactions on Communication
Balanced Sparsest Generator Matrices for MDS Codes
We show that given and , for sufficiently large, there always
exists an MDS code that has a generator matrix satisfying the
following two conditions: (C1) Sparsest: each row of has Hamming weight ; (C2) Balanced: Hamming weights of the columns of differ from each
other by at most one.Comment: 5 page
A Unified Coded Deep Neural Network Training Strategy Based on Generalized PolyDot Codes for Matrix Multiplication
This paper has two contributions. First, we propose a novel coded matrix
multiplication technique called Generalized PolyDot codes that advances on
existing methods for coded matrix multiplication under storage and
communication constraints. This technique uses "garbage alignment," i.e.,
aligning computations in coded computing that are not a part of the desired
output. Generalized PolyDot codes bridge between Polynomial codes and MatDot
codes, trading off between recovery threshold and communication costs. Second,
we demonstrate that Generalized PolyDot can be used for training large Deep
Neural Networks (DNNs) on unreliable nodes prone to soft-errors. This requires
us to address three additional challenges: (i) prohibitively large overhead of
coding the weight matrices in each layer of the DNN at each iteration; (ii)
nonlinear operations during training, which are incompatible with linear
coding; and (iii) not assuming presence of an error-free master node, requiring
us to architect a fully decentralized implementation without any "single point
of failure." We allow all primary DNN training steps, namely, matrix
multiplication, nonlinear activation, Hadamard product, and update steps as
well as the encoding/decoding to be error-prone. We consider the case of
mini-batch size , as well as , leveraging coded matrix-vector
products, and matrix-matrix products respectively. The problem of DNN training
under soft-errors also motivates an interesting, probabilistic error model
under which a real number MDS code is shown to correct errors
with probability as compared to for the
more conventional, adversarial error model. We also demonstrate that our
proposed strategy can provide unbounded gains in error tolerance over a
competing replication strategy and a preliminary MDS-code-based strategy for
both these error models.Comment: Presented in part at the IEEE International Symposium on Information
Theory 2018 (Submission Date: Jan 12 2018); Currently under review at the
IEEE Transactions on Information Theor
- …
