3,382,611 research outputs found

    Multiple Description Coding of Discrete Ergodic Sources

    Get PDF
    We investigate the problem of Multiple Description (MD) coding of discrete ergodic processes. We introduce the notion of MD stationary coding, and characterize its relationship to the conventional block MD coding. In stationary coding, in addition to the two rate constraints normally considered in the MD problem, we consider another rate constraint which reflects the conditional entropy of the process generated by the third decoder given the reconstructions of the two other decoders. The relationship that we establish between stationary and block MD coding enables us to devise a universal algorithm for MD coding of discrete ergodic sources, based on simulated annealing ideas that were recently proven useful for the standard rate distortion problem.Comment: 6 pages, 3 figures, presented at 2009 Allerton Conference on Communication, Control and Computin

    Rare Variants of Putative Candidate Genes Associated With Sporadic Meniere's Disease in East Asian Population

    Get PDF
    Objectives: The cause of Meniere's disease (MD) is unclear but likely involves genetic and environmental factors. The aim of this study was to investigate the genetic basis underlying MD by screening putative candidate genes for MD. Methods: Sixty-eight patients who met the diagnostic criteria for MD of the Barany Society were included. We performed targeted gene sequencing using next generation sequencing (NGS) panel composed of 45 MD-associated genes. We identified the rare variants causing non-synonymous amino acid changes, stop codons, and insertions/deletions in the coding regions, and excluded the common variants with minor allele frequency >0.01 in public databases. The pathogenicity of the identified variants was analyzed by various predictive tools and protein structural modeling. Results: The average read depth for the targeted regions was 1446.3-fold, and 99.4% of the targeted regions were covered by 20 or more reads, achieving the high quality of the sequencing. After variant filtering, annotation, and interpretation, we identified a total of 15 rare heterozygous variants in 12 (17.6%) sporadic patients. Among them, four variants were detected in familial MD genes (DTNA, FAM136A, DPT), and the remaining 11 in MD-associated genes (PTPN22, NFKB1, CXCL10, TLR2, MTHFR, SLC44A2, NOS3, NOTCH2). Three patients had the variants in two or more genes. All variants were not detected in our healthy controls (n = 100). No significant differences were observed between patients with and without a genetic variant in terms of sex, mean age of onset, bilaterality, the type of MD, and hearing threshold at diagnosis. Conclusions: Our study identified rare variants of putative candidate genes in some of MD patients. The genes were related to the formation of inner ear structures, the immune-associated process, or systemic hemostasis derangement, suggesting the multiple genetic predispositions in the development of MD

    Review on Blueprint of Designing Anti-Wetting Polymeric Membrane Surfaces for Enhanced Membrane Distillation Performance

    Get PDF
    Recently, membrane distillation (MD) has emerged as a versatile technology for treating saline water and industrial wastewater. However, the long-term use of MD wets the polymeric membrane and prevents the membrane from working as a semi-permeable barrier. Currently, the concept of antiwetting interfaces has been utilized for reducing the wetting issue of MD. This review paper discusses the fundamentals and roles of surface energy and hierarchical structures on both the hydrophobic characteristics and wetting tolerance of MD membranes. Designing stable antiwetting interfaces with their basic working principle is illustrated with high scientific discussions. The capability of antiwetting surfaces in terms of their self-cleaning properties has also been demonstrated. This comprehensive review paper can be utilized as the fundamental basis for developing antiwetting surfaces to minimize fouling, as well as the wetting issue in the MD process

    Muscle Dysmorphia and its Associated Psychological Features in Three Groups of Recreational Athletes

    Get PDF
    AbstractMuscle Dysmorphia (MD) is a psychological disorder characterized by the preoccupation with the idea that one’s body is not lean and muscular. The current study aimed to explore MD behaviours and symptoms in three groups of recreational athletes: bodybuilders (BB; n = 42), strength athletes (SA; n = 61), and fitness practitioners (FP; n = 22). Furthermore, we assessed MD-related psychological features as well as possible psychological predictors of MD among groups. Results highlighted that the BB group reported more beliefs about being smaller and weaker than desired compared to the other groups, whereas individuals in the SA group reported setting higher standards for themselves than the FP group. Lastly, orthorexia nervosa and social anxiety symptoms emerged as predictors of MD symptoms in the BB group. Taken together, our findings suggest that individuals in the BB group are characterized by more MD general symptomatology than those in the other groups; furthermore, only orthorexia nervosa and social anxiety may play a specific role in predicting MD general symptoms in bodybuilders.</jats:p

    Molecular Dynamics Simulation of Macromolecules Using Graphics Processing Unit

    Full text link
    Molecular dynamics (MD) simulation is a powerful computational tool to study the behavior of macromolecular systems. But many simulations of this field are limited in spatial or temporal scale by the available computational resource. In recent years, graphics processing unit (GPU) provides unprecedented computational power for scientific applications. Many MD algorithms suit with the multithread nature of GPU. In this paper, MD algorithms for macromolecular systems that run entirely on GPU are presented. Compared to the MD simulation with free software GROMACS on a single CPU core, our codes achieve about 10 times speed-up on a single GPU. For validation, we have performed MD simulations of polymer crystallization on GPU, and the results observed perfectly agree with computations on CPU. Therefore, our single GPU codes have already provided an inexpensive alternative for macromolecular simulations on traditional CPU clusters and they can also be used as a basis to develop parallel GPU programs to further speedup the computations.Comment: 21 pages, 16 figure

    Momentum distribution in heavy deformed nuclei: role of effective mass

    Full text link
    The impact of nuclear deformation on the momentum distributions (MD) of occupied proton states in 238^{238}U is studied with a phenomenological Woods-Saxon (WS) shell model and the self-consistent Skyrme-Hartree-Fock (SHF) scheme. Four Skyrme parameterizations (SkT6, SkM*, SLy6, SkI3) with different effective masses are used. The calculations reveal significant deformation effects in the low-momentum domain of Kπ=1/2±K^{\pi}=1/2^{\pm} states, mainly of those lying near the Fermi surface. For other states, the deformation effect on MD is rather small and may be neglected. The most remarkable result is that the very different Skyrme parameterizations and the WS potential give about identical MD. This means that the value of effective mass, being crucial for the description of the spectra, is not important for the spatial shape of the wave functions and thus for the MD. In general, it seems that, for the description of MD at 0k3000\le k \le 300 MeV/c, one may use any single-particle scheme (phenomenological or self-consistent) fitted properly to the global ground state properties.Comment: 14 pages, 6 figure
    corecore