72,139 research outputs found

    Alternatives to the MCMC method

    Get PDF
    The Markov Chain Monte Carlo method (MCMC) is often used to generate independent (pseudo) random numbers from a distribution with a density that is known only up to a normalising constant. With the MCMC method it is not necessary to compute the normalising constant (see e.g. Tierney, 1994; Besag, 2000). In this paper we show that the well-known acceptance-rejection algorithm also works with unnormalised densities, and so this algorithm can be used to confirm the results of the MCMC method in simple cases. We present an example with real data

    A hybrid adaptive MCMC algorithm in function spaces

    Full text link
    The preconditioned Crank-Nicolson (pCN) method is a Markov Chain Monte Carlo (MCMC) scheme, specifically designed to perform Bayesian inferences in function spaces. Unlike many standard MCMC algorithms, the pCN method can preserve the sampling efficiency under the mesh refinement, a property referred to as being dimension independent. In this work we consider an adaptive strategy to further improve the efficiency of pCN. In particular we develop a hybrid adaptive MCMC method: the algorithm performs an adaptive Metropolis scheme in a chosen finite dimensional subspace, and a standard pCN algorithm in the complement space of the chosen subspace. We show that the proposed algorithm satisfies certain important ergodicity conditions. Finally with numerical examples we demonstrate that the proposed method has competitive performance with existing adaptive algorithms.Comment: arXiv admin note: text overlap with arXiv:1511.0583

    Lattice Gaussian Sampling by Markov Chain Monte Carlo: Bounded Distance Decoding and Trapdoor Sampling

    Get PDF
    Sampling from the lattice Gaussian distribution plays an important role in various research fields. In this paper, the Markov chain Monte Carlo (MCMC)-based sampling technique is advanced in several fronts. Firstly, the spectral gap for the independent Metropolis-Hastings-Klein (MHK) algorithm is derived, which is then extended to Peikert's algorithm and rejection sampling; we show that independent MHK exhibits faster convergence. Then, the performance of bounded distance decoding using MCMC is analyzed, revealing a flexible trade-off between the decoding radius and complexity. MCMC is further applied to trapdoor sampling, again offering a trade-off between security and complexity. Finally, the independent multiple-try Metropolis-Klein (MTMK) algorithm is proposed to enhance the convergence rate. The proposed algorithms allow parallel implementation, which is beneficial for practical applications.Comment: submitted to Transaction on Information Theor

    Computational Efficiency in Bayesian Model and Variable Selection

    Get PDF
    Large scale Bayesian model averaging and variable selection exercises present, despite the great increase in desktop computing power, considerable computational challenges. Due to the large scale it is impossible to evaluate all possible models and estimates of posterior probabilities are instead obtained from stochastic (MCMC) schemes designed to converge on the posterior distribution over the model space. While this frees us from the requirement of evaluating all possible models the computational effort is still substantial and efficient implementation is vital. Efficient implementation is concerned with two issues: the efficiency of the MCMC algorithm itself and efficient computation of the quantities needed to obtain a draw from the MCMC algorithm. We evaluate several different MCMC algorithms and find that relatively simple algorithms with local moves perform competitively except possibly when the data is highly collinear. For the second aspect, efficient computation within the sampler, we focus on the important case of linear models where the computations essentially reduce to least squares calculations. Least squares solvers that update a previous model estimate are appealing when the MCMC algorithm makes local moves and we find that the Cholesky update is both fast and accurate.Bayesian Model Averaging; Sweep operator; Cholesky decomposition; QR decomposition; Swendsen-Wang algorithm
    corecore