1,475 research outputs found

    QED and relativistic corrections in superheavy elements

    Get PDF
    In this paper we review the different relativistic and QED contributions to energies, ionic radii, transition probabilities and Land\'e gg-factors in super-heavy elements, with the help of the MultiConfiguration Dirac-Fock method (MCDF). The effects of taking into account the Breit interaction to all orders by including it in the self-consistent field process are demonstrated. State of the art radiative corrections are included in the calculation and discussed. We also study the non-relativistic limit of MCDF calculation and find that the non-relativistic offset can be unexpectedly large.Comment: V3, May 31st, 200

    K-Shell Photoionization of Singly Ionized Atomic Nitrogen: Experiment and Theory

    Full text link
    Absolute cross sections for the K-shell photoionization of C-like nitrogen ions were measured by employing the ion-photon merged-beam technique at the SOLEIL synchrotron radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/Δ\DeltaE \approx 7,000 was achieved with the photon energy from 388 to 430 eV scanned with a band pass of 300 meV, and the 399.4 to 402 eV range with 60 meV. Experimental results are compared with theoretical predictions made from the multi-configuration Dirac-Fock (MCDF) and R-matrix methods. The interplay between experiment and theory enabled the identification and characterization of the strong 1s \rightarrow 2p resonances observed in the spectra.Comment: 7 pages, 3 figures, 2 table

    Nitrogen K-shell photoabsorption

    Get PDF
    Reliable atomic data have been computed for the spectral modeling of the nitrogen K lines, which may lead to useful astrophysical diagnostics. Data sets comprise valence and K-vacancy level energies, wavelengths, Einstein AA-coefficients, radiative and Auger widths and K-edge photoionization cross sections. An important issue is the lack of measurements which are usually employed to fine-tune calculations so as to attain spectroscopic accuracy. In order to estimate data quality, several atomic structure codes are used and extensive comparisons with previous theoretical data have been carried out. In the calculation of K photoabsorption with the Breit--Pauli RR-matrix method, both radiation and Auger damping, which cause the smearing of the K edge, are taken into account. This work is part of a wider project to compute atomic data in the X-ray regime to be included in the database of the popular {\sc xstar} modeling code

    1s2s2p23d 6L - 1s2p33d 6D, L=F, D, P Transitions in O IV, F V and Ne VI

    Full text link
    We present observations of VUV transitions between doubly excited sextet states in O IV, F V and Ne VI. Spectra were produced by collisions of an O+ beam with a solid carbon target. We also studied spectra obtained previously of F V and Ne VI. Some observed lines were assigned to the 1s2s2p23d 6L - 1s2p33d 6D, L=F, D, P electric-dipole transitions, and compared with results of MCHF (with QED and higher-order corrections) and MCDF calculations. 42 new lines have been identified. Highly excited sextet states in five-electron ions provide a new form of energy storage and are possible candidates for VUV and x-ray lasers.Comment: 11 pages, 12 figure

    K-Shell Photoionization of B-like Oxygen (O3+^{3+}) Ions: Experiment and Theory

    Full text link
    Absolute cross sections for the {\it K}-shell photoionization of boron-like (B-like) O3+^{3+} ions were measured by employing the ion-photon merged-beam technique at the SOLEIL synchrotron-radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/Δ\DeltaE \approx 5000 (\approx 110 meV, FWHM) was achieved with photon energy from 540 eV up to 600 eV. Several theoretical approaches, including R-Matrix, Multi-Configuration Dirac-Fock and Screening Constant by Unit Nuclear Charge were used to identify and characterize the strong 1s \rightarrow 2p and the weaker 1s \rightarrow 3p resonances observed in the {\it K}-shell spectra of this ion. The trend of the integrated oscillator strength and autoionisation width (natural line width) of the strong 1s2p\rm 1s \rightarrow 2p resonances along the first few ions of the B-like sequence is discussed.Comment: 23 pages, 5 figures, 5 tables, accepted for publication in J. Phys. B. arXiv admin note: text overlap with arXiv:1402.051

    Dielectronic Recombination (via N=2 --> N'=2 Core Excitations) and Radiative Recombination of Fe XX: Laboratory Measurements and Theoretical Calculations

    Get PDF
    We have measured the resonance strengths and energies for dielectronic recombination (DR) of Fe XX forming Fe XIX via N=2 --> N'=2 (Delta_N=0) core excitations. We have also calculated the DR resonance strengths and energies using AUTOSTRUCTURE, HULLAC, MCDF, and R-matrix methods, four different state-of-the-art theoretical techniques. On average the theoretical resonance strengths agree to within <~10% with experiment. However, the 1 sigma standard deviation for the ratios of the theoretical-to-experimental resonance strengths is >~30% which is significantly larger than the estimated relative experimental uncertainty of <~10%. This suggests that similar errors exist in the calculated level populations and line emission spectrum of the recombined ion. We confirm that theoretical methods based on inverse-photoionization calculations (e.g., undamped R-matrix methods) will severely overestimate the strength of the DR process unless they include the effects of radiation damping. We also find that the coupling between the DR and radiative recombination (RR) channels is small. We have used our experimental and theoretical results to produce Maxwellian-averaged rate coefficients for Delta_N=0 DR of Fe XX. For kT>~1 eV, which includes the predicted formation temperatures for Fe XX in an optically thin, low-density photoionized plasma with cosmic abundances, our experimental and theoretical results are in good agreement. We have also used our R-matrix results, topped off using AUTOSTRUCTURE for RR into J>=25 levels, to calculate the rate coefficient for RR of Fe XX. Our RR results are in good agreement with previously published calculations.Comment: To be published in ApJS. 65 pages with 4 tables and lots of figure

    Dielectronic Recombination in Photoionized Gas. II. Laboratory Measurements for Fe XVIII and Fe XIX

    Get PDF
    In photoionized gases with cosmic abundances, dielectronic recombination (DR) proceeds primarily via nlj --> nl'j' core excitations (Dn=0 DR). We have measured the resonance strengths and energies for Fe XVIII to Fe XVII and Fe XIX to Fe XVIII Dn=0 DR. Using our measurements, we have calculated the Fe XVIII and Fe XIX Dn=0 DR DR rate coefficients. Significant discrepancies exist between our inferred rates and those of published calculations. These calculations overestimate the DR rates by factors of ~2 or underestimate it by factors of ~2 to orders of magnitude, but none are in good agreement with our results. Almost all published DR rates for modeling cosmic plasmas are computed using the same theoretical techniques as the above-mentioned calculations. Hence, our measurements call into question all theoretical Dn=0 DR rates used for ionization balance calculations of cosmic plasmas. At temperatures where the Fe XVIII and Fe XIX fractional abundances are predicted to peak in photoionized gases of cosmic abundances, the theoretical rates underestimate the Fe XVIII DR rate by a factor of ~2 and overestimate the Fe XIX DR rate by a factor of ~1.6. We have carried out new multiconfiguration Dirac-Fock and multiconfiguration Breit-Pauli calculations which agree with our measured resonance strengths and rate coefficients to within typically better than <~30%. We provide a fit to our inferred rate coefficients for use in plasma modeling. Using our DR measurements, we infer a factor of ~2 error in the Fe XX through Fe XXIV Dn=0 DR rates. We investigate the effects of this estimated error for the well-known thermal instability of photoionized gas. We find that errors in these rates cannot remove the instability, but they do dramatically affect the range in parameter space over which it forms.Comment: To appear in ApJS, 44 pages with 13 figures, AASTeX with postsript figure
    corecore