16,259 research outputs found

    Reactive oxygen species induce virus-independent MAVS-oligomerization in systemic lupus erythematosus

    Get PDF
    The increased expression of genes induced by type I interferon (IFN) is characteristic of viral infections and systemic lupus erythematosus (SLE). We showed that mitochondrial antiviral signaling (MAVS) protein, which normally forms a complex with retinoic acid gene I (RIG-I)–like helicases during viral infection, was activated by oxidative stress independently of RIG-I helicases. We found that chemically generated oxidative stress stimulated the formation of MAVS oligomers, which led to mitochondrial hyperpolarization and decreased adenosine triphosphate production and spare respiratory capacity, responses that were not observed in similarly treated cells lacking MAVS. Peripheral blood lymphocytes of SLE patients also showed spontaneous MAVS oligomerization that correlated with the increased secretion of type I IFN and mitochondrial oxidative stress. Furthermore, inhibition of mitochondrial reactive oxygen species (ROS) by the mitochondria-targeted antioxidant MitoQ prevented MAVS oligomerization and type I IFN production. ROS-dependent MAVS oligomerization and type I IFN production were reduced in cells expressing the MAVS-C79F variant, which occurs in 30% of sub-Saharan Africans and is linked with reduced type I IFN secretion and milder disease in SLE patients. Patients expressing the MAVS-C79F variant also had reduced amounts of oligomerized MAVS in their plasma compared to healthy controls. Together, our findings suggest that oxidative stress–induced MAVS oligomerization in SLE patients may contribute to the type I IFN signature that is characteristic of this syndrome

    Can scalable design of wings for flapping wing micro air vehicle be inspired by natural flyers?

    Get PDF
    Lift production is constantly a great challenge for flapping wing micro air vehicles (MAVs). Designing a workable wing, therefore, plays an essential role. Dimensional analysis is an effective and valuable tool in studying the biomechanics of flyers. In this paper, geometric similarity study is firstly presented. Then, the pw−AR ratio is defined and employed in wing performance estimation before the lumped parameter is induced and utilized in wing design. Comprehensive scaling laws on relation of wing performances for natural flyers are next investigated and developed via statistical analysis before being utilized to examine the wing design. Through geometric similarity study and statistical analysis, the results show that the aspect ratio and lumped parameter are independent on mass, and the lumped parameter is inversely proportional to the aspect ratio. The lumped parameters and aspect ratio of flapping wing MAVs correspond to the range of wing performances of natural flyers. Also, the wing performances of existing flapping wing MAVs are examined and follow the scaling laws. Last, the manufactured wings of the flapping wing MAVs are summarized. Our results will, therefore, provide a simple but powerful guideline for biologists and engineers who study the morphology of natural flyers and design flapping wing MAVs

    Decentralized MPC based Obstacle Avoidance for Multi-Robot Target Tracking Scenarios

    Full text link
    In this work, we consider the problem of decentralized multi-robot target tracking and obstacle avoidance in dynamic environments. Each robot executes a local motion planning algorithm which is based on model predictive control (MPC). The planner is designed as a quadratic program, subject to constraints on robot dynamics and obstacle avoidance. Repulsive potential field functions are employed to avoid obstacles. The novelty of our approach lies in embedding these non-linear potential field functions as constraints within a convex optimization framework. Our method convexifies non-convex constraints and dependencies, by replacing them as pre-computed external input forces in robot dynamics. The proposed algorithm additionally incorporates different methods to avoid field local minima problems associated with using potential field functions in planning. The motion planner does not enforce predefined trajectories or any formation geometry on the robots and is a comprehensive solution for cooperative obstacle avoidance in the context of multi-robot target tracking. We perform simulation studies in different environmental scenarios to showcase the convergence and efficacy of the proposed algorithm. Video of simulation studies: \url{https://youtu.be/umkdm82Tt0M

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    MAVS expressed by hematopoietic cells is critical for control of West Nile virus infection and pathogenesis

    Get PDF
    West Nile virus (WNV) is the most important cause of epidemic encephalitis in North America. Innate immune responses, which are critical for control of WNV infection, are initiated by signaling through pathogen recognition receptors, RIG-I and MDA5, and their downstream adaptor molecule, MAVS. Here, we show that a deficiency of MAVS in hematopoietic cells resulted in increased mortality and delayed WNV clearance from the brain. In Mavs(−/−) mice, a dysregulated immune response was detected, characterized by a massive influx of macrophages and virus-specific T cells into the infected brain. These T cells were polyfunctional and lysed peptide-pulsed target cells in vitro. However, virus-specific T cells in the brains of infected Mavs(−/−) mice exhibited lower functional avidity than those in wild-type animals, and even virus-specific memory T cells generated by prior immunization could not protect Mavs(−/−) mice from WNV-induced lethal disease. Concomitant with ineffective virus clearance, macrophage numbers were increased in the Mavs(−/−) brain, and both macrophages and microglia exhibited an activated phenotype. Microarray analyses of leukocytes in the infected Mavs(−/−) brain showed a preferential expression of genes associated with activation and inflammation. Together, these results demonstrate a critical role for MAVS in hematopoietic cells in augmenting the kinetics of WNV clearance and thereby preventing a dysregulated and pathogenic immune response. IMPORTANCE West Nile virus (WNV) is the most important cause of mosquito-transmitted encephalitis in the United States. The innate immune response is known to be critical for protection in infected mice. Here, we show that expression of MAVS, a key adaptor molecule in the RIG-I-like receptor RNA-sensing pathway, in hematopoietic cells is critical for protection from lethal WNV infection. In the absence of MAVS, there is a massive infiltration of myeloid cells and virus-specific T cells into the brain and overexuberant production of proinflammatory cytokines. These results demonstrate the important role that MAVS expression in hematopoietic cells has in regulating the inflammatory response in the WNV-infected brain

    Navigation, localization and stabilization of formations of unmanned aerial and ground vehicles

    Get PDF
    A leader-follower formation driving algorithm developed for control of heterogeneous groups of unmanned micro aerial and ground vehicles stabilized under a top-view relative localization is presented in this paper. The core of the proposed method lies in a novel avoidance function, in which the entire 3D formation is represented by a convex hull projected along a desired path to be followed by the group. Such a representation of the formation provides non-collision trajectories of the robots and respects requirements of the direct visibility between the team members in environment with static as well as dynamic obstacles, which is crucial for the top-view localization. The algorithm is suited for utilization of a simple yet stable visual based navigation of the group (referred to as GeNav), which together with the on-board relative localization enables deployment of large teams of micro-scale robots in environments without any available global localization system. We formulate a novel Model Predictive Control (MPC) based concept that enables to respond to the changing environment and that provides a robust solution with team members' failure tolerance included. The performance of the proposed method is verified by numerical and hardware experiments inspired by reconnaissance and surveillance missions
    corecore