3,908,248 research outputs found

    Open Petri Nets

    Full text link
    The reachability semantics for Petri nets can be studied using open Petri nets. For us an "open" Petri net is one with certain places designated as inputs and outputs via a cospan of sets. We can compose open Petri nets by gluing the outputs of one to the inputs of another. Open Petri nets can be treated as morphisms of a category Open(Petri)\mathsf{Open}(\mathsf{Petri}), which becomes symmetric monoidal under disjoint union. However, since the composite of open Petri nets is defined only up to isomorphism, it is better to treat them as morphisms of a symmetric monoidal double category Open(Petri)\mathbb{O}\mathbf{pen}(\mathsf{Petri}). We describe two forms of semantics for open Petri nets using symmetric monoidal double functors out of Open(Petri)\mathbb{O}\mathbf{pen}(\mathsf{Petri}). The first, an operational semantics, gives for each open Petri net a category whose morphisms are the processes that this net can carry out. This is done in a compositional way, so that these categories can be computed on smaller subnets and then glued together. The second, a reachability semantics, simply says which markings of the outputs can be reached from a given marking of the inputs.Comment: 30 pages, TikZ figure

    Measurement master equation

    Get PDF
    We derive a master equation describing the evolution of a quantum system subjected to a sequence of observations. These measurements occur randomly at a given rate and can be of a very general form. As an example, we analyse the effects of these measurements on the evolution of a two-level atom driven by an electromagnetic field. For the associated quantum trajectories we find Rabi oscillations, Zeno-effect type behaviour and random telegraph evolution spawned by mini quantum jumps as we change the rates and strengths of measurement.Comment: 14 pages and 8 figures, Optics Communications in pres

    A master bosonization duality

    Full text link
    We conjecture a new sequence of dualities between Chern-Simons gauge theories simultaneously coupled to fundamental bosons and fermions. These dualities reduce to those proposed by Aharony when the number of bosons or fermions is zero. Our conjecture passes a number of consistency checks. These include the matching of global symmetries and consistency with level/rank duality in massive phases.Comment: 29 pages, 2 figures; v2: minor improvements; v3: typos fixe
    corecore