883,437 research outputs found
Radiating Bondi and Cooling Site Flows
Steady accretion of a radiating gas onto a central mass point is described
and compared to classic Bondi accretion. Radiation losses are essential for
accretion flows to be observed. Unlike Bondi flows, radiating Bondi flows pass
through a sonic point at a finite radius and become supersonic near the center.
The morphology of all radiating Bondi flows is described by a single
dimensionless parameter. In radiating Bondi flows the mass accretion rate
varies approximately as the first power of the central mass -- this differs
significantly from the quadratic dependence on the central mass in classical
Bondi flows. Mass accretion rates onto galaxy or cluster-centered black holes
estimated from traditional and radiating Bondi flows are significantly
different. In radiating Bondi flows the gas temperature increases at large
radii, as in the cores of many galaxy groups and clusters, allowing radiating
Bondi flows to merge naturally with gas arriving from their cluster
environments. Some radiating flows cool completely before reaching the center
of the flow, and this also occurs in cooling site flows in which there is no
central gravitating mass.Comment: 9 pages with 3 figures; accepted by Ap
Mass Flows in Cometary UCHII Regions
High spectral and spatial resolution, mid-infrared fine structure line
observations toward two ultracompact HII (UCHII) regions (G29.96 -0.02 and Mon
R2) allow us to study the structure and kinematics of cometary UCHII regions.
In our earlier study of Mon R2, we showed that highly organized mass motions
accounted for most of the velocity structure in that UCHII region. In this
work, we show that the kinematics in both Mon R2 and G29.96 are consistent with
motion along an approximately paraboloidal shell. We model the velocity
structure seen in our mapping data and test the stellar wind bow shock model
for such paraboloidal like flows. The observations and the simulation indicate
that the ram pressures of the stellar wind and ambient interstellar medium
cause the accumulated mass in the bow shock to flow along the surface of the
shock. A relaxation code reproduces the mass flow's velocity structure as
derived by the analytical solution. It further predicts that the pressure
gradient along the flow can accelerate ionized gas to a speed higher than that
of the moving star. In the original bow shock model, the star speed relative to
the ambient medium was considered to be the exit speed of ionized gas in the
shell.Comment: 34 pages, including 14 figures and 1 table, to be published in ApJ,
September 200
Preheated Advection Dominated Accretion Flow
All high temperature accretion solutions including ADAF are physically thick,
so outgoing radiation interacts with the incoming flow, sharing as much or more
resemblance with classical spherical accretion flows as with disk flows. We
examine this interaction for the popular ADAF case. We find that without
allowance for Compton preheating, a very restricted domain of ADAF solution is
permitted and with Compton preheating included a new high temperature PADAF
branch appears in the solution space. In the absence of preheating, high
temperature flows do not exist when the mass accretion rate mdot == Mdot c^2 /
L_E >~ 10^-1.5. Below this mass accretion rate, a roughly conical region around
the hole cannot sustain high temperature ions and electrons for all flows
having mdot >~ 10^-4, which may lead to a funnel possibly filled with a tenuous
hot outgoing wind. If the flow starts at large radii with the usual equilibrium
temperature ~10^4 K, the critical mass accretion rate is much lower, mdot
\~10^-3.7 above which level no self-consistent ADAF (without preheating) can
exist. However, above this critical mass accretion rate, the flow can be
self-consistently maintained at high temperature if Compton preheating is
considered. These solutions constitute a new branch of solutions as in
spherical accretion flows. High temperature PADAF flows can exist above the
critical mass accretion rate in addition to the usual cold thin disk solutions.
We also find solutions where the flow near the equatorial plane accretes
normally while the flow near the pole is overheated by Compton preheating,
possibly becoming, a polar wind, solutions which we designate WADAF.Comment: 41 pages with 10 postscript figures (aastex5). Submitted to Ap
An Investigation of Void Fraction in the Stratified/Annular Flow Regions in Smooth, Horizontal Tubes
Refrigerants R134a and R410A have been used for void fraction measurements in smooth
horizontal tubes with diameters between 4mm and 7mm. Quality and mass flux were varied from
5% to 90% and 75 kglm2-s to 700 kglm2-s, respectively. Two test loops, one for condensing
flows at 35C and the other for evaporating flows at 5C, were used in the investigation. Results
show that near the transition from annular to stratified flow void fraction changed from viscousinertial
dependence to gravitational-inertial dominated dependence. An important feature
observed is the annular flow region's relative insensitivity to mass flux while the border region
between annular and stratified flows is characterized by strong mass flux dependence.Air Conditioning and Refrigeration Project 7
Rock flows
Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas
ASCA and ROSAT observations of nearby cluster cooling flows
We present a detailed analysis of the X-ray properties of the cooling flows
in a sample of nearby, X-ray bright clusters of galaxies using high-quality
ASCA spectra and ROSAT X-ray images. We demonstrate the need for multiphase
models to consistently explain the spectral and imaging X-ray data for the
clusters. The mass deposition rates of the cooling flows, independently
determined from the ASCA spectra and ROSAT images, exhibit reasonable
agreement. We confirm the presence of intrinsic X-ray absorption in the
clusters using a variety of spectral models. We also report detections of
extended m infrared emission, spatially coincident with the cooling
flows, in several of the systems studied. The observed infrared fluxes and flux
limits are in good agreement with the predicted values due to reprocessed X-ray
emission from the cooling flows. We present precise measurements of the
abundances of iron, magnesium, silicon and sulphur in the central regions of
the Virgo and Centaurus clusters. Our results firmly favour models in which a
high mass fraction (70-80 per cent) of the iron in the X-ray gas in these
regions is due to Type Ia supernovae. Finally, we present a series of methods
which may be used to measure the ages of cooling flows from the X-ray data. The
results for the present sample of clusters indicate ages of between 2.5 and 7
Gyr. If the ages of cooling flows are primarily set by subcluster merger
events, then our results suggest that in the largest clusters, mergers with
subclusters with masses of approximately 30 per cent of the final cluster mass
are likely to disrupt cooling flows.Comment: Final version. MNRAS, in press. 36 pages, 9 figs, 14 tables in MNRAS
LaTex styl
Mass-loaded spherical accretion flows
We have calculated the evolution of spherical accretion flows undergoing mass-loading from embedded clouds through either conduction or hydrodynamical ablation. We have observed the effect of varying the ratios of the mass-loading timescale and the cooling timescale to the ballistic crossing timescale through the mass-loading region.
We have also varied the ratio of the potential energy of a particle injected into the flow near the outer region of mass-loading to the temperature at which a minimum occurs in the cooling curve. The two types of mass-loading produce qualitatively different types of behaviour in the accretion flow, since mass-loading through conduction requires the ambient gas to be hot, whereas mass ablation from clumps occurs throughout the flow. Higher ratios of injected to accreted mass typically occur with hydrodynamical ablation, in agreement with previous work on wind-blown bubbles and supernova remnants. We find that mass-loading damps the radiative overstability of such flows, in agreement with our earlier work. If the mass-loading is high enough it can stabilize the accretion shock at a constant radius, yielding an almost isothermal subsonic post-shock flow. Such solutions may be relevant to cooling flows onto massive galaxies. Mass-loading can also lead to the formation of isolated shells of high temperature material, separated by gas at cooler temperatures
Time-dependent Circulation Flows: Iron Enrichment in Cooling Flows with Heated Return Flows
We describe a new type of dynamical model for hot gas in galaxy groups and
clusters in which gas moves simultaneously in both radial directions.
Circulation flows are consistent with (1) the failure to observe cooling gas in
X-ray spectra, (2) multiphase gas observed near the centers of these flows and
(3) the accumulation of iron in the hot gas from Type Ia supernovae in the
central galaxy. Dense inflowing gas cools, producing a positive central
temperature gradient, as in normal cooling flows. Bubbles of hot, buoyant gas
flow outward. Circulation flows eventually cool catastrophically if the outward
flowing gas transports mass but no heat; to maintain the circulation both mass
and energy must be supplied to the inflowing gas over a large volume, extending
to the cooling radius. The rapid radial recirculation of gas produces a flat
central core in the gas iron abundance, similar to many observations. We
believe the circulation flows described here are the first gasdynamic,
long-term evolutionary models that are in good agreement with all essential
features observed in the hot gas: little or no gas cools as required by XMM
spectra, the gas temperature increases outward near the center, and the gaseous
iron abundance is about solar near the center and decreases outward.Comment: 17 pages (emulateapj5) with 6 figures; accepted by The Astrophysical
Journa
Two-phase discharge flow prediction in safety valves
Safety Relief Valves (SRV) are necessary elements in the protection of any pressurised system and the prediction of the expected discharge flows is an important consideration for the valve sizing to ensure that rupture pressures do not occur. The high speed flows that occur inside the SRV are complex particularly when a two-phase flow is involved and lead to a less capable protection device which result in larger valves compared to single phase flows. In this paper the ability of a CFD based two phase mixture model to predict the critical flows of air and water through a safety valve is examined. An industrial refrigeration safety relief valve of ¼” inlet bore size has been tested experimentally over a pressure range of 6-15 barg and air mass qualities from 0.1-1 when discharging to near atmospheric conditions for a fully open condition. A two-dimensional mixture model consisting of mixture mass, momentum, and energy equations, combined with a liquid mass equation and the standard k- ε turbulence model for mixture turbulent transport has been used to predict the two phase flows through the valve. The mixture model results have been compared with the Homogenous Equilibrium Model (HEM) commonly used for in valve sizing in non flashing two phase flow conditions. The accuracy of the models over the two phase flow range are quantified and discussed
- …
